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Abstract

Clothing is still manually manufactured for the most part nowadays, resulting in
discrepancies between nominal and real dimensions, and potentially ill-fitting gar-
ments. Hence, it is common in the apparel industry to manually perform measures
at preshipment time. We present an automatic method to obtain such measures
from a single image of a garment that speeds up this task. It is generic and exten-
sible in the sense that it does not depend explicitly on the garment shape or type.
Instead, it learns through a probabilistic graphical model to identify the different
contour parts. Subsequently, a set of Lasso regressors, one per desired measure,
can predict the actual values of the measures. We present results on a dataset
of 130 images of jackets and 98 of pants, of varying sizes and styles, obtaining
obtaining 1.17 and 1.22 cm of mean absolute error, respectively.
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1. Introduction

Automatically measuring objects in order to check whether they conform to
a certain tolerance with respect to nominal values is a problem that frequently
occurs in the industry, for instance for quality control. Machine vision systems
obtain these measures by analyzing images of the inspected objects. On them it is5

possible to assess not only the dimensional quality of objects but also to quantify
their shape attributes, position, orientation, alignment etc. [1] both in two and
three dimensions [2].

Many and diverse manufacturing processes have benefited from the design of
problem-specific automatic visual measurement methods [3–7]. The difficulty of10

the problem such methods have to face is often correlated to the degree in which
objects shape and pose vary: from objects always at a fixed position with respect
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to the camera and rigid, equal shapes, to free position, non-rigid and articulated
shapes. In the first case, the detection of the points from which to take longitudinal
or area measures is in general easier than in the second, where the shape has to15

be first understood before localizing the points of interest along its contour. The
problem we address is the automatic visual measurement of apparel. It lies in the
later group, that requires shape understanding.

Unlike mass manufacturing of other products, which often uses precise ma-
chinery and automation, clothing is still largely done by hand. This results in20

discrepancies between the actual and the nominal dimensions. This adds to the
problem of deciding how much smaller the dimensions of the garment with respect
to the body need to be in order to achieve a good fit.

Difference in dimensions is a problem in ready-to-wear because when a cus-
tomer buys the same garment shape in the same size several times, he or she25

wants them to have the same dimensions. Moreover, new players in the apparel
industry specialize on the manufacture of custom tailored garments through web
sites. Typically, they offer the possibility to potential clients to enter their body
measures so that the product they receive fits them perfectly. Again, and now
even more critical, it may be the case that the garment finally made does not30

satisfy this key goal. Ill-fitting garments don’t just imply extra costs in the form
of returns and unsellable products but can turn customers to a competitor. Thus,
the final checking of garments dimensional measures before they are dispatched
to customers is highly desirable. But manually obtaining them presents several
drawbacks:35

• Mainly, the inspection of all the produced garments is costly, so perhaps not
all the garments are inspected but just some random sample. The reason
is that even taking and writing down 10 measures per clothing piece takes
some minutes.

• Measurements have some degree of subjectivity not only because they are40

collected by humans but because, obviously, textiles fold.

• Another source of subjectivity is that whereas some measures are distances
between characteristic points like seams or profile corners, others are between
ill-defined points (figure 2), their location being left to the criteria of the
inspector.45

1.1. Objective

In this paper we describe an automatic, fast and generic method to obtain
dimensional measures from garments at preshipment time, exemplified with two
common types : jackets and pants. Each one has its own set of measures and of
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course a different shape and pattern of shape variation. One possible —though50

cumbersome— approach is to build an ad-hoc, independent method for each type.
Our goal is more far reaching: a single method able to cope with these two

types and easily extensible to new types coming in the future, with their own
shapes and list of measures. The solution is, as we will see, a method that learns
how to measure a certain type of garment just from a training set of samples, being55

the samples pairs of image and corresponding groundtruth measures values. That
is, the method does not depend on the particular shape of a type of garments.
Learning means being able to understand the apparel contour in order to then
obtain an estimation for the value of the sought measures —normally distances—
without knowing the particular points from which they are defined.60

1.2. Related work

The computer-assisted visual inspection within the apparel industry covers
several of the phases of the production pipeline [8]. However, most of the works
concentrate in the early stage of fabric inspection, where the problem is the de-
tection of a number of defects like stains, pilling, weaving and knitting errors, etc.65

[9–11]. From the computer vision point of view, these are problems of texture
analysis, for which [12] offers a through review and categorization of techniques.
The problem of automated inspection of manufactured garments has received com-
paratively less attention, perhaps because of the larger variability of the kind of
objects to inspect.70

As for the problem we address, obtaining dimensional measures of garments,
the literature is scarcer. To the best of our knowledge there are only four works
coincident to ours. The oldest one dates back to thirty years ago [13], where the
authors proposed a simple algorithm to find key points along the contour of gar-
ments from which later obtain dimensional measures. The goal was to assess the75

shrinkage of knitted garments, but they already mention the possibility of “routine
inspection prior to dispatch to customers”. After a large gap, next two works [14],
[15] compute the Freeman chain code of the contour in order to locate its corners
which are the same type of key points. Like in the previous case, no extensive
results are presented but just a few examples. Last and most recent work is [16],80

which follows the same strategy of key point detection prior to measurement. An
interesting contribution of this work is that they apply their method to several
types of garments (shirt, pants, vest, skirt) plus the ability to recognize it from
the image. Each key point among a list of corner points is selected by comparing
relative position, concavity and convexity with those of a template garment. Like85

before, no analysis of the results is provided, globally, per garment type or per
dimensional measure. Furthermore, no details are provided on the specific param-
eters and procedure to select the key points beyond that they are the most similar
to those in the template.
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Figure 1: Scheme of the method.

Coincident with our goal of obtaining dimensional measures from ill-defined90

points along the contour of a varying shape, the authors of [17] propose a method
to automate the task of a tailor by image analysis of human body profiles. Besides
needing infra-red markers, this method relies on heuristics to locate the endpoints
of the dimensional measures, similarly to [16].

As we will see in next section, differently from all of these works we strive for95

a generic method whose parameters are learned from a training set. Hence, it
will be easy to extend from one type of garment to new types. Moreover, we do
not classify corner or high curvature points into some key point class, in order to
avoid local decisions that are prone to error. Instead our method will consider the
contour globally and from it will obtain the dimensional measures by regression,100

not by computing any kind of distance.

1.3. Method overview

Figure 1 illustrates the idea of the method. The first step is to extract the
contour of a garment from the image and then approximate it by a number of
straight segments. We have previously decided a division of the contour of each105

type of garment into a set of meaningful parts. For example in jackets these are
the neck, left shoulder, left wrist, outer and inner left sleeve, left trunk, etc. (see
figures 4 and 11 for the complete list). The second step is to classify each segment
as belonging to one of these parts. We cast this task into labeling a number of
unknown variables of a chain conditional random field (CRF), being the variables110

the segments, and the labels the former types of contour parts. Probabilistic
graphical models like CRFs allow us to properly combine

• the vector of features describing the segments, like their position or orienta-
tion, which play the role of likelihood, and

• the strong dependencies or relationships that exist between labels of consec-115

utive variables, namely, a prior: after an sleeve segment often comes another
sleeve segment, less often a wrist segment, and never trunk, for instance.
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Labeling results from inference on this CRF, that is, finding the configuration
of labels that maximizes the joint a posteriori probability, which is proportional to
the likelihood times the prior. However, in order to succeed it is critical to learn120

in advance the CRF parameters, which we achieve through the structured support
vector machine (S-SVM) technique.

Once labeled all the segments, the last step estimates the measures defined for
that type of garment. Now we could try to locate the end points for each measure of
interest from the labeled segments. However, this would need an ad-hoc, apparel-125

dependent algorithm (one for jackets, another for pants, etc.), opposite to our goal
of a completely learnable system. Moreover, some measures are defined between
hidden points, like the chest in jackets, whose endpoints are at the joint of the
sleeves and the trunk (figure 2), and thus can not be obtained in this way. Our
approach is, instead of computing distances, to regress them from distances among130

the labeled segments. Thus we again end up learning parameters, now of a set of
regressors. We will show that this indirect approach yields very good estimations
for all measures. Furthermore, being able to estimate all the measures from a
single image saves the time to place the garments in different poses in order to
make all the endpoints visible.135

To summarize, the contributions of this work are

• a new method for apparel visual measurement with a sound theoretical basis,
that is fast and performs well, as shown by processing a relatively large
number of samples

• easily extensible to new types (that is, shapes) of garment, as we will show140

when switching from jackets to pants, because it learns to measure from
examples

• with a key component, a CRF for segment labeling, which is highly accurate
in spite of being based on few and very simple features

• able to obtain accurate longitudinal dimensions for which their end points145

are not even visible, because they are regressed from other distances

The rest of the paper is organized as follows. Next section presents the details
of the dataset we have used, composed of two subsets, one per type of apparel.
In section 3 we explain the two first components of the method, namely, the
extraction of the garment contour and its segments, and their labeling. For the150

sake of comprehensiveness, we include background on CRFs and learning with
S-SVM. Also, we report there the results for this component and compare it to a
well known non-structured prediction technique, linear SVM. Section 4 continues
with the last component, the one computing all the measures from the labeled
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Figure 2: Eight measures on jackets and five on pants that form the groundtruth for these two
garment types. Some of them are distances between hidden points (chest, crotch) or points not
on a corner or a seam (biceps, waist, thigh), in both cases shown as dashed lines.
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segments through regression. Section 5 presents several statistics comparing the155

estimated and real measures. Finally, in section 6 we draw the conclusions and
avenues of future work.

2. Dataset

The dataset used for learning the CRF and the regressors parameters is com-
posed of 130 images of jackets and 98 pants. Images were captured by an off-the-160

shelf USB web camera at a resolution of 1920×1080 under controlled LED lighting.
As for the imaged garments, their axes of variations are not only color and size
but also style (i.e, shape), slight rotations plus, more importantly, fabric folds and
the positioning of the “articulated” parts, sleeves and legs. For the sake of speed,
garments are placed under the camera without enforcing strict rules, only trying to165

avoid excessive folding and to keep sleeves and legs apart from the trunk and each
other, respectively. Despite around 20% of samples do not fulfill this constraint
we have still kept them in the dataset. Top and bottom rows of figure 3 show
three examples of well placed jacket and pants, whereas middle row shows typical
a priori problematic samples.170

Along with the images, we have the groundtruth values for the measures cor-
responding to each type of apparel (figure 2). They were manually collected with
a regular metric tape with marks every 0.5 cm, so that measures are quantized to
multiples of this number. These values are destined to train the regressors and
then to evaluate the estimated measures, according to a cross-validation procedure175

that we will introduce in the results section.
In addition, in order to previously train and asses the CRF that labels the

contour segments we also need groundtruth. This time it consists on the class of
contour part for each of the segments of all available jackets and pants, totaling
more than 8000 segments. Their manual annotation is not as long as it may seem,180

since we only need to provide the number of the first segment for each contour
part, because segments are sorted clockwise. It amounts to just 12 and 7 numbers
per sample for jackets and pants, respectively. Figure 4 shows a number of such
annotated samples.
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Figure 3: Examples of jackets and pants. Top and bottom rows depict well laid out garments,
keeping sleeves and legs apart. Middle row are problematic yet considered samples.

8



3. Segment processing185

3.1. Extraction of contour segments

Images were recorded by laying garments on a red background, a color so
distinct from those of garments, that simple thresholding already segments well the
garment region. From the binary segmented image it is then also straightforward
to extract the contour.190

Now, the most direct way to obtain the sought measures is to find out the two
end points for each one of them. For instance in jackets, as figure 2 shows, measure
“sleeve” is the distance from the high curvature point that separates shoulder and
sleeve, to the left corner of the wrist, “hip” is the distance between the two lower
corners of the trunk, etc. Many such endpoints are corners, namely, points where195

the contour distinctly changes direction (figures 5a and 5b). This suggests a way
to find the endpoints : select a fixed number of candidates among the extrema of
curvature by ranking them according to their magnitude, and then apply a set of
heuristic rules that combine the magnitude, sign of curvature and relative position
in order to identify the endpoints among those candidates. This approach, though200

feasible, has two drawbacks. First and foremost, it’s a long and adhoc procedure
: for each endpoint of each measure of each type of garment we have to define
a certain heuristic rule, which can be rather complicated. Second, it implicitly
assumes the garment is well placed, thus requiring the user to lay it down carefully
under the camera. Accidental textile folds may provoke wrong detections, as the205

decisions (the rules) are made locally and applied in some predefined order.
In order to avoid the former drawbacks, we resort to an indirect but more

general approach. For each garment type we define:

1. a list of parts in which the whole contour is divided, as shown in figures 4
and 11 for jackets and pants, respectively210

2. the list of measures to take (but not from where) by regression of all possible
distances from the starting point of each part to the rest

These two will be the only apparel-dependent information the proposed method
will demand, in form of training data. Furthermore, we approximate the contour by
straight segments, thus simplifying its representation. There exist many algorithms215

to obtain a polygonal approximation of contours into a given number of segments,
as reviewed in [18, 19] and references therein. For our particular problem, a sensible
way to do it is to not simply perform a polygonal approximation but to somehow
enforce the segments to end at extrema of curvature, because they often coincide
with the endpoints of longitudinal measures. Therefore, from the contour points220

(xi, yi), i = 1 . . . we compute the curvature as [20]

κi =
x′iy
′′
i − x′′i y′′i

(x′i
2 + y′i

2)3/2
(1)
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Figure 4: Groundtruth of segment labels for 20 samples. Color denotes the segment class, that
is, the type of contour part. These are the following: neck at top (red), waist at the bottom
(black), and left and right shoulder (blue, gray), outer sleeve (yellow, magenta), wrist (green,
brown), inner sleeve (cyan, light green) and trunk (pink, orange). Last two rows show cases of
badly placed garments. Best viewed in color.
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(a)

(b)

(c) (d)

Figure 5: Process for the extraction of segments. (a) Contour from segmentation, (b) curvature
of the contour and its extrema, (c) location of extrema, which are the input to the process which
extracts the (d) segments.
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where the derivatives are approximated by convolving the x and y vectors with
first and second order differences of discretized Gaussian kernels,

x′i ≈ x ∗ (Gσ(i)−Gσ(i− 1)) (2)

x′′i ≈ x ∗ (−Gσ(i− 1) + 2Gσ(i)−Gσ(i+ 1))

with σ controlling the degree of regularization. The largest l extrema in magni-
tude are kept, giving rise to the same number of segments, with l = 40 for jackets225

and l = 30 for pants (figures 5c and 5d). The next step now is to classify each
segment as belonging to a certain contour part, that is, a labeling problem.

3.2. Segment classification

Structured prediction consists in assigning a class label not to a single instance
but to each of the instances of an aggregate or structure —a chain, tree, graph,230

etc. depending on how a problem is modeled—, with modeled interdependencies
among them. Before the surge of deep learning, probabilistic graphical models
were the technique of choice for structured prediction.

In this framework, and following the notation of [21], y = (y1 . . . yn) denotes the
n unknown variables of the aggregate. The space of all possible labellings is Y =235

Y n, being Y = {1 . . . c} with c the number of possible classes or labels. x ∈ X is the
set of known variables or observations, for instance one per unknown variable. X
is the space of all possible observations for the known variables. Each observation
xi is actually a vector of d features or measurements of different quantities which
are somehow related to some of the unknown labels y. It is assumed that the240

conditional probability distribution p(y|x) has the following shape :

p(y|x) =
1

Z(x)
exp[−E(x, y)] (3)

Z(x) =
∑
y

exp[−E(x, y)] (4)

being Z(x) a normalizing constant known as the partition function. E is the
energy function, and maximizing p(y|x) with respect to y is equivalent to energy
minimization (or maximization of −E), for which several algorithms have been
proposed. Many of them leverage the fact that, for maximum conditional prob-245

ability inference to be computable, E has to have a certain structure, namely it
factorizes as

E(x, y) =
∑
F∈F

EF (xF , yF ) (5)
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where F is a set of factors, groups of known and unknown variables in which
we partition the model graph. For instance, in the popular pairwise models, each
factor F consists of two directly related (neighbor) variables yi, yj plus all the250

observations xk also directly related to them.
Let the prediction function of the graphical model f : X → Y parametrized by

coefficients w be

f(x;w) = arg min
y∈Y

∑
F∈F

EF (xF , yF ) = arg max
y∈Y

g(x, y;w) (6)

As for g, for tractability reasons and also because in practice it allows to obtain
good solutions to many real problems, it is assumed that g(x, y) is linear in the255

factor functions

g(x, y;w) =
∑
F∈F

〈wF , ψF (x, y) 〉 = 〈w,ψ(x, y) 〉 (7)

where w and ψ are the concatenation of coefficients and factor functions, re-
spectively.

Now, returning to our problem of segment labeling, the CRF model we adopt
is the linear chain or sequence shown in figure 6. In it, x = (x1 . . . xn), being n is260

the number of segments, d the number of features per segment, xi ∈ Rd, i = 1 . . . n
the observations or value of the features for the i-th segment, and yi ∈ 1 . . . c the
label assigned to it. The small solid squares are factor functions which model the
dependencies of yi on both the i-th observation and the following (unknown) label
yi+1. xi will be a vector of d = 5 very simple features : the normalized coordinates265

of its endpoints plus the angle it forms with the horizontal axis.
Prediction is then performed according to the following classification rule :

y? = arg max
y∈Y

〈w,ψ(x, y) 〉

= arg max
y∈Y

n∑
i=1

c∑
p=1

d∑
j=1

wpjxij1yi=p +
n−1∑
i=1

c∑
p=1

c∑
q=1

wpq 1yi=p, yi+1=q (8)

where yi ∈ Y and 1yi=p, yi+1=q evaluates to 1 if yi = p and yi+1 = q. Therefore,
there are cd unary coefficients wpj and c2 pairwise coefficients wpq. The former
weight the features while the later encode the compatibility between pairs of suc-270

cessive labels. Even though |Y| = cn is huge, prediction y? can be computed
with a complexity of O(cn) by means of the max-product inference algorithm [21].
Moreover, it is not approximated but exact because the absence of loops in a chain
CRF.
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Figure 6: Graphical model, a chain CRF. Solid squares are factor functions, in our case the dot
products of equation (8).

Note that an alternative formulation is possible, namely, classifying the end-275

points of segments —extrema of curvature— into either one of the key points from
which longitudinal measures are taken, or to non-key point. This is a far less
convenient formulation as the former one based on segment labels, because it does
not leverage the constraints the context provides. In effect, since there are much
more irrelevant curvature extrema than key points, what we would learn then is280

just that 1) after a non-key point comes almost always another non-key point, and
2) after each key point most often comes a non-key point, not another certain key
point.

Table 1 shows the accuracy of segment labeling when assessed with leave-one-
out cross-validation : 99.67% for jackets and 100% for pants. The key to the285

success of structured prediction is not as much that inference is exact but having
properly learned the coefficients of the model. We have resorted to a minim-risk
learning technique known as structured support vector machine (S-SVM) [22, 23]
that we summarize following the notation of [21].

3.2.1. Structured Support Vector Machines290

Let ∆(y, f(x;w)) : X × Y → R be a loss function that returns the cost of
getting an answer y′ = f(x;w) instead of the true labeling y. Depending on the
graphical model, the loss function is different. In the case of a single label, it is
normally the 0-1 loss ∆(y, y′) = 1y 6=y′ . However for sequence prediction it makes
more sense the Hamming loss, that counts the number of wrong labels,295

∆(y, y′) =
1

N

n∑
i=1

1yi 6=y′i (9)

that we adopt here. S-SVM seeks to minimize the regularized empirical risk of
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the training set (xn, yn), n = 1 . . . N , being N the number of samples :

w? = arg max
w

1

2
||w||2 +

C

N

N∑
i=1

l(xn, yn;w) (10)

with the loss function l being

l(xn, yn;w) = max
y∈Y

∆(yn, y)− g(xn, yn;w) + g(xn, y;w) (11)

It can easily be shown that l is a convex upper bound of ∆(yn, f(xn;w)), the
true loss. C for its part is a hyperparameter to weight the contribution of the
regularization term, set experimentally by cross-validation.300

Equation (10) involves a non-differentiable operator so plain gradient descent
can not be applied. However, it can be numerically optimized through subgradient
descent minimization. Alternatively, it can be formulated in an equivalent way very
close to classic SVMs, by replacing the max operator by N slack variables :

w? = arg min
w, ξn∈R

1

2
||w||2 +

C

N

N∑
n=1

ξn (12)

subject to, for all n = 1 . . . N ,305

g(xn, yn;w)− g(xn, y;w) ≥ ∆(yn, y)− ξn, ∀y ∈ Y
ξn ≥ 0

Even though the objective function is quadratic in w under linear constraints,
a well studied case in optimization theory, the sheer number of constraints, N |Y|,
seems to preclude its optimization in practice. Actually, it is not even possible to
store them in a computer program. However, it turns out that only a tiny subset
of these constraints are relevant because they subsume the remaining ones. There310

exist algorithms to iteratively find this subset, like cutting plane and Frank-Wolfe,
after which the solution can be readily found. The explanation of these rather
complex algorithms is out of the scope of this paper and we refer the interested
reader to [22, 24] for an in depth treatment. What is more relevant here is that
they are based on repeatedly performing inference, that is, solving equation (6).315

In our case this means making inference on a chain, equation (8), which not only
is fast but also exact.

3.2.2. Comparison with non-structured prediction

One may wonder what is the benefit of performing structured prediction, where
context is taken into account, compared to simpler non-structured prediction,320

where the labeling just depends on the actual observations of each segment. That
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is, does it pay to formulate and solve the problem in a more complex way? To
this end, we have performed the experiment of labeling the segments with a classic
Support Vector Machine classifier based on the same features and with the same
folds of leave-one-out cross-validation. Table 1 shows the accuracy for the two325

methods, both for jackets and pants. Looking at the accuracy, one may think
the two approaches are almost the same, being the difference a scarce 1.6% and
1%, respectively. We argue the success of SVM is due to having selected highly
discriminant features. Figure 7 supports this argument in that normalized end-
point coordinates and angle are quite well separated for the different contour parts.330

However, the error distribution tells a different story. In either case wrong labeled
segments are not concentrated on a few samples. For almost all samples with er-
rors these count to 1 or 2 wrong labels. The number of samples with some labeling
error is four times larger for SVM than for CRF in jackets. As for pants, struc-
tured prediction gets a striking no errors score, whereas SVM produces at least335

one error in one out of every five samples. Moreover, the type of errors is distinct.
In CRF classification most wrong labels extend or shorten some contour part but
the right order is preserved while in SVM it is not and this has an impact on the
measures regression step. The influence of these two factors with regard the error
in the final longitudinal measures will be further analyzed in the results section.340

We have conducted an experiment to compare the robustness to noise of both
approaches. A random Gaussian noise with different standard deviations was
added to the features, prior to learning and prediction. Figure 8 shows the evo-
lution of the number of incorrectly labeled segments as σ increases. We can ap-
preciate that whereas SVM accuracy rapidly decreases, that of CRF degrades at345

a much slower pace.
A final experiment in defense of the superiority of structured prediction is

removing features from the observations. What if only the angle is kept, can we
still expect to classify well the segments when their position is unknown? With
this unique feature CRF still produces an accuracy of 79% and 72% for jackets and350

pants, respectively, while SVM drops to 33% and 55%. We attribute the results to
the fact that modeling and learning the context, that is, the dependencies between
successive label pairs, is a powerful cue to the prediction.

An interesting side effect of modeling the problem with a CRF is that, dif-
ferently from SVM, its parameters are interpretable. Unary parameters wp,j, p =355

1 . . . c, j = 1 . . . d tell us how much the j-th feature weights with regard to classi-
fying a segment into class p. For instance, figure 9a shows that the class of neck
segments weights negatively the vertical x coordinates because they are at the top
of the image. On its part, wp,q, p, q = 1 . . . c are the weights for the compatibility
of two successive segments to have labels p and q, that is, which class of segment360

comes after each other class. Thus, we expect a kind of bi-diagonal matrix, telling
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Table 1: Labeling accuracy for 130 jackets and 98 pants, with 40 segments per jacket and 30 per
pants.

Apparel Total Classifier Wrong Accuracy Samples with Percent

segments labels in % wrong labels samples

Jacket 5200
CRF 17 99.67 14 10.8

SVM 100 98.08 59 45.4

Pants 2940
CRF 0 100.00 0 0.0

SVM 31 98.95 21 21.4

us that after some label we will have the same label again or the one for the next
part in the contour. Figure 9 confirms this intuition.

A last experiment explores the dependence of the classification accuracy to
the size of the training set. Figure 10 shows that SVM obtains a similar result365

independent of the number of folds in the cross-validation, from 8 folds (16/12
jackets/pants for test, 114/86 for training) to leave-one-out (a single sample for
test). It seems that SVM does not need many samples to learn a good classifier,
at least with the present highly discriminative features. CRF, on its side, benefits
from more samples per training fold, specially for jackets possibly because they370

exhibit more shape variations than pants in the placement of the sleeves.

4. Measurements

Now that we have labeled the segments, thus identifying the different contour
parts, we can proceed to taking the dimensional measurements which are the true
outcome of the method. In principle, we could just compute distances between375

certain pairs of contour part endpoints, as most measures are defined so. For
example, in figure 11, pants bottom is the distance between endpoints 2 and 3 or
5 and 6, and pants length is distance between 1 and 2 or 0 and 6. However, this
direct approach does not take into account the uncertainty in segment labeling:
it may not always be perfect, and a single error could induce some completely380

wrong measures. Moreover, some measures are defined between points which are
not any of the endpoints of the contour parts: chest, waist and biceps in jackets,
hip, crotch, thigh in pants.

We propose instead to regress each measure from the list of all the distances
between the starting points of each part. This makes c(c − 1)/2 distances if c is385

the number of contour parts or segment labels. In this way, even if any segment is
misclassified, it is possible that its effect is reduced because regression depends on
a certain number of distances between contour parts, most of which will be right.
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Figure 7: Normalized coordinates of first point of each segment (top) and segment angle (bottom)
for a subset of 23 jackets. Each symbol represents one of the 12 classes of segments. Best viewed
in color.
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Figure 8: Rate of wrong labels when Gaussian noise is added to the features rescaled to the [0, 1]
range.
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(a) (b)

(c) (d)

Figure 9: Learned unary (a), (c) and pairwise (b), (d) coefficients for jackets (top) and pants
(bottom). x0norm, y0norm, x1norm, y1norm stand for the vertical and horizontal coordinates of
the segment endpoints rescaled to [0, 1].
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Figure 10: Accuracy of labeling depending on the number of folds. Last points correspond to
leave-one-out.
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Table 2: Regression methods and their objective functions.

Method Norm of
data loss

Coefficients
regularizer

Objective function

Least squares l2 none ||y −Xw||22
Ridge regression l2 l2 ||y −Xw||22 + α||w||22
SVR ε-insensitive l1 max{0, ||y −Xw||1 − ε}+ α||w||1

l1

Lasso l2 l1 ||y −Xw||22 + α||w||1

But then, which type of regression is better to apply? According to the former
reasoning, classic least squares regression is a good candidate. However, we have390

come across two problems. One is the well known sensitivity of least squares to
outliers, which do happen in our problem when segments are misclassified some-
times. The other one is that it is not reasonable to impose, as least squares does, a
Gaussian prior on the coefficients which implies that all of them should have more
or less similar magnitude. On the contrary, for all measures only a few distances395

matter. Even a unique distance, like the length in pants or the wrist and sleeve in
jackets, because of the way we have divided the contour.

What we want to avoid, for the sake of generality, is to impose from which
few distances to regress each measure. Instead, we want to automatically learn it.
This is possible through the addition of a L1 regularization term to the regression400

cost that imposes sparsity to the learned coefficients. Hence, Lasso regression fits
well into our problem. We have assessed the accuracy of four regression methods:
least squares with no regularization, ridge regression, Lasso [25] and support vector
regression [26], whose objective functions are shown in table 2. Table 3 compares
their accuracy in terms of the uncertainty (standard deviation of error) for each405

measure independently. We see there our intuition confirmed: Lasso regression is
the best method for the majority of measures and also in average. In addition,
in figure 11 we note that for each pants measure its regressor employs just a few
non-negligible coefficients, and that these are those weighting the distances the
most related to the measure in question.410

5. Results

The final outcome of the method is an estimation of a list of dimensional
measurements, each provided by a learned regressor. In order to make the most of
the dataset, consisting on 130 jackets and 98 pants, we have adopted a leave-one-
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Table 3: Uncertainty in cm for several regression techniques. For least squares we first removed
the outliers from the regressed values.

Apparel Measure Least Ridge SVR Lasso
squares regression

chest 3.12 2.51 2.46 2.38
length 2.51 1.70 2.00 1.63
waist 1.71 1.66 1.49 1.48
hip 2.37 2.14 2.11 2.13

Jacket shoulder 2.16 1.75 1.66 1.56
sleeve 1.45 1.07 1.09 0.99
wrist 0.91 0.70 0.77 0.71
biceps 1.90 1.27 1.36 1.19

length 1.06 0.95 1.02 0.93
bottom 1.14 1.03 1.00 1.00

Pants hip 2.54 2.43 2.09 2.20
waist 1.95 1.66 1.56 1.63
crotch 1.98 2.04 2.21 2.07
thigh 2.06 1.96 2.27 2.10

mean 1.92 1.63 1.65 1.57
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waist length hip

bottom thigh crotch

Figure 11: Lasso coefficients for each measure of pants. Each coefficient weights the distance
between the starting points of two parts. On the axis, point numbers as enumerated on the top
plot.
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out cross-validation strategy: all the samples but one are used to train the CRF415

for segment labeling and then the Lasso regressors. The remaining one is used for
testing, that is, to assess the labeling and compute the regression error. And this
process is repeated for every sample.

We assess the accuracy by computing four kinds of statistics on the error, the
difference between the groundtruth measure obtained by hand and that estimated420

by the regressor. The first two are the percentage of samples with an absolute and
relative error below certain margins. The third and fourth ones are the uncertainty
and the mean absolute error (MAE), with which we try to summarize the accuracy
into a single number. Table 4 shows them all, for each measure and garment
type. Overall, the estimation performs well both for jackets and pants. We can425

appreciate that for all measures but three, the relative error is less than 10% in
more than 95% of the samples. For the remaining three (biceps, crotch, hip) it is
around 90% of samples. For a tighter margin of less than 5% error, we still get
the vast majority of samples, being the worst case the wrist, with about 70% of
samples. One possible reason is that it is the shortest one, and the groundtruth430

has a resolution of 0.5 cm for many samples.
One may wonder if all the errors are equally important with regard to how

well the garment will fit to the customer. It turns out that no, being the chest,
sleeve and shoulder the most important measures for jackets, and waist and length
for pants. All of them are well estimated but chest, for which we get only 77% of435

samples with an error less than 5%, and the largest uncertainty and MAE of jackets
measures, 2.38 and 1.83 cm, respectively. The reason is that this longitudinal
dimension has no endpoints coincident with any contour part being thus more
complex to estimate than others, but also it is the more ambiguous measure when
one gets it manually.440

Finally, and as mentioned above, we want to compare these results with those
obtained with the non-structured classification of segments, that is, using the
SVM classifier and the same regression technique. Even though the classification
accuracy was close to that of the CRF, we can see when comparing tables 5 and
4 that for SVM both the uncertainty and MAE for all measures are worse by a445

significant margin. Similarly, all means of absolute and relative error percentages
under all margins are also worse. This comes to support our hypothesis that
structured prediction pays in the end.
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Table 4: Results of Lasso regression for 130 jackets and 98 pants after labeling with the CRF
classifier.

Percent samples Percent of samples Mean

with absolute error with relative error Uncer- absolute

Apparel Measure less than less than tainty error

2 cm 4 cm 6 cm 2.5% 5% 10% (cm) (cm)

chest 66.2 92.3 97.7 46.9 76.9 98.5 2.38 1.83

length 76.2 97.7 100.0 76.9 96.9 100.0 1.63 1.28

waist 81.5 99.2 99.2 65.4 93.8 100.0 1.48 1.14

Jacket hip 68.5 92.3 99.2 53.1 80.0 99.2 2.13 1.66

shoulder 81.5 97.7 100.0 63.1 87.7 98.5 1.56 1.18

sleeve 96.2 100.0 100.0 93.1 100.0 100.0 0.99 0.81

wrist 99.2 100.0 100.0 40.8 66.9 96.2 0.71 0.57

biceps 87.7 100.0 100.0 34.6 68.5 89.2 1.19 0.92

mean 82.1 97.4 99.5 59.2 83.8 97.7 1.51 1.17

length 96.9 100.0 100.0 99.0 100.0 100.0 0.93 0.72

bottom 95.9 98.0 100.0 44.9 82.7 96.9 1.00 0.70

Pants hip 69.4 90.8 98.0 58.2 81.6 96.9 2.20 1.66

waist 83.7 96.9 100.0 67.3 86.7 98.0 1.63 1.17

crotch 70.4 90.8 100.0 35.7 67.3 90.8 2.07 1.61

thigh 73.5 94.9 96.9 43.9 69.4 92.9 2.10 1.46

mean 81.6 95.2 99.2 58.2 81.3 95.9 1.66 1.22

26



Table 5: Same as in table 4 but for the SVM segment classifier. 6 jackets (4.6%) could not be
processed because some parts of the contour were not detected at all in them.

Percent samples Percent of samples Mean

with absolute error with relative error Uncer- absolute

Apparel Measure less than less than tainty error

2 cm 4 cm 6 cm 2.5% 5% 10% (cm) (cm)

chest 63.8 88.5 93.1 46.9 73.1 93.8 2.43 1.83

length 65.4 83.8 86.2 65.4 83.1 92.3 3.75 2.08

waist 73.1 90.0 93.8 56.9 85.4 93.8 2.40 1.47

Jacket hip 60.8 83.1 90.8 47.7 71.5 90.0 3.02 2.04

shoulder 71.5 93.1 94.6 55.4 80.8 93.8 1.75 1.34

sleeve 87.7 95.4 95.4 85.4 94.6 95.4 1.11 0.88

wrist 94.6 95.4 95.4 36.2 61.5 92.3 0.73 0.60

biceps 86.9 95.4 95.4 33.1 64.6 85.4 1.16 0.90

mean 75.5 90.6 93.1 53.4 76.8 92.1 2.04 1.39

length 92.9 98.0 98.0 96.9 98.0 99.0 1.62 0.90

bottom 93.9 96.9 99.0 40.8 78.6 94.9 1.32 0.84

Pants hip 67.3 86.7 94.9 57.1 78.6 92.9 2.69 1.89

position 79.6 90.8 92.9 65.3 82.7 91.8 2.80 1.61

crotch 63.3 84.7 94.9 32.7 60.2 84.7 3.23 2.11

thigh 71.4 88.8 92.9 39.8 65.3 88.8 3.19 2.66

mean 78.1 91.0 95.4 55.4 77.2 92.0 2.48 1.67
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6. Conclusions

We have presented a method to obtain measures from a single image of a450

garment for size checking. Its main advantage is that, differently from past works,
it is not highly dependent on the garment shape and the good localization of key
points from which the measures are defined. Instead, it is able to understand the
garment contour, that is, it classifies its segments into a set of meaningful contour
parts from which a set of regressors estimate the measures. The parameters of455

both processes, contour segment labeling and regression, are learned from training
samples and thus the method is directly extensible to new shapes other than
jackets and pants. The only thing it needs is a partition of the contour into classes
and groundtruth in the form of segment class annotations and values for the new
measures.460

We have analyzed the contribution on the result of the structured prediction
through a CRF and the Lasso regression, and compared it to non-structured pre-
diction with SVM and other types of non-sparse regressors in order to justify our
method. The results show a high accuracy for all measures for the two types of
garment considered, with a mean absolute error of 1.17 and 1.22 cm for jackets465

and pants, respectively.
The present success of deep learning for structured prediction may rise the

question of what would be the performance with such types of architectures. We
believe that graphical models are better suited to our problem that deep neural
networks (DNN), at least for the segment labeling part. DNNs typically have a470

large number of parameters and part of their success relies on the availability of
large datasets to learn them well. Ours is not that large, in the order of thousands
of segments that means only hundreds of samples. Another reason for their success
is that they learn good representations for the data and the task at hand. However,
we show here that just five very simple and sensible features —segment endpoint475

coordinates and angle— lead to a very high labeling accuracy. Hence, as future
work we do not envisage learning better representations but to apply the present
method on new types of garments common in the apparel industry like shirts,
skirts, coats etc. and also to other kinds of objects, like human profiles.
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