|
Records |
Links |
|
Author |
Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez |
|
|
Title |
An iterative multiresolution scheme for SFM with missing data |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
JMIV |
|
|
Volume |
34 |
Issue |
3 |
Pages |
240–258 |
|
|
Keywords |
|
|
|
Abstract |
Several techniques have been proposed for tackling the Structure from Motion problem through factorization in the case of missing data. However, when the percentage of unknown data is high, most of them may not perform as well as expected. Focussing on this problem, an iterative multiresolution scheme, which aims at recovering missing entries in the originally given input matrix, is proposed. Information recovered following a coarse-to-fine strategy is used for filling in the missing entries. The objective is to recover, as much as possible, missing data in the given matrix.
Thus, when a factorization technique is applied to the partially or totally filled in matrix, instead of to the originally given input one, better results will be obtained. An evaluation study about the robustness to missing and noisy data is reported.
Experimental results obtained with synthetic and real video sequences are presented to show the viability of the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ JSL2009a |
Serial |
1163 |
|
Permanent link to this record |
|
|
|
|
Author |
Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez |
|
|
Title |
Predicting Missing Ratings in Recommender Systems: Adapted Factorization Approach |
Type |
Journal Article |
|
Year |
2009 |
Publication |
International Journal of Electronic Commerce |
Abbreviated Journal |
|
|
|
Volume |
14 |
Issue |
1 |
Pages |
89-108 |
|
|
Keywords |
|
|
|
Abstract |
The paper presents a factorization-based approach to make predictions in recommender systems. These systems are widely used in electronic commerce to help customers find products according to their preferences. Taking into account the customer's ratings of some products available in the system, the recommender system tries to predict the ratings the customer would give to other products in the system. The proposed factorization-based approach uses all the information provided to compute the predicted ratings, in the same way as approaches based on Singular Value Decomposition (SVD). The main advantage of this technique versus SVD-based approaches is that it can deal with missing data. It also has a smaller computational cost. Experimental results with public data sets are provided to show that the proposed adapted factorization approach gives better predicted ratings than a widely used SVD-based approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1086-4415 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ JSL2009b |
Serial |
1237 |
|
Permanent link to this record |
|
|
|
|
Author |
Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez |
|
|
Title |
An Iterative Multiresolution Scheme for SFM with Missing Data: single and multiple object scenes |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Image and Vision Computing |
Abbreviated Journal |
IMAVIS |
|
|
Volume |
28 |
Issue |
1 |
Pages |
164-176 |
|
|
Keywords |
|
|
|
Abstract |
Most of the techniques proposed for tackling the Structure from Motion problem (SFM) cannot deal with high percentages of missing data in the matrix of trajectories. Furthermore, an additional problem should be faced up when working with multiple object scenes: the rank of the matrix of trajectories should be estimated. This paper presents an iterative multiresolution scheme for SFM with missing data to be used in both the single and multiple object cases. The proposed scheme aims at recovering missing entries in the original input matrix. The objective is to improve the results by applying a factorization technique to the partially or totally filled in matrix instead of to the original input one. Experimental results obtained with synthetic and real data sequences, containing single and multiple objects, are presented to show the viability of the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0262-8856 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ JSL2010 |
Serial |
1278 |
|
Permanent link to this record |
|
|
|
|
Author |
Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez |
|
|
Title |
Rank Estimation in Missing Data Matrix Problems |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
JMIV |
|
|
Volume |
39 |
Issue |
2 |
Pages |
140-160 |
|
|
Keywords |
|
|
|
Abstract |
A novel technique for missing data matrix rank estimation is presented. It is focused on matrices of trajectories, where every element of the matrix corresponds to an image coordinate from a feature point of a rigid moving object at a given frame; missing data are represented as empty entries. The objective of the proposed approach is to estimate the rank of a missing data matrix in order to fill in empty entries with some matrix completion method, without using or assuming neither the number of objects contained in the scene nor the kind of their motion. The key point of the proposed technique consists in studying the frequency behaviour of the individual trajectories, which are seen as 1D signals. The main assumption is that due to the rigidity of the moving objects, the frequency content of the trajectories will be similar after filling in their missing entries. The proposed rank estimation approach can be used in different computer vision problems, where the rank of a missing data matrix needs to be estimated. Experimental results with synthetic and real data are provided in order to empirically show the good performance of the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0924-9907 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ JSL2011; |
Serial |
1710 |
|
Permanent link to this record |
|
|
|
|
Author |
Carme Julia; Felipe Lumbreras; Angel Sappa |
|
|
Title |
A Factorization-based Approach to Photometric Stereo |
Type |
Journal Article |
|
Year |
2011 |
Publication |
International Journal of Imaging Systems and Technology |
Abbreviated Journal |
IJIST |
|
|
Volume |
21 |
Issue |
1 |
Pages |
115-119 |
|
|
Keywords |
|
|
|
Abstract |
This article presents an adaptation of a factorization technique to tackle the photometric stereo problem. That is to recover the surface normals and reflectance of an object from a set of images obtained under different lighting conditions. The main contribution of the proposed approach is to consider pixels in shadow and saturated regions as missing data, in order to reduce their influence to the result. Concretely, an adapted Alternation technique is used to deal with missing data. Experimental results considering both synthetic and real images show the viability of the proposed factorization-based strategy. © 2011 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 21, 115–119, 2011. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ JLS2011; ADAS @ adas @ |
Serial |
1711 |
|
Permanent link to this record |
|
|
|
|
Author |
Cesar de Souza; Adrien Gaidon; Yohann Cabon; Naila Murray; Antonio Lopez |
|
|
Title |
Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models |
Type |
Journal Article |
|
Year |
2020 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
128 |
Issue |
|
Pages |
1505–1536 |
|
|
Keywords |
Procedural generation; Human action recognition; Synthetic data; Physics |
|
|
Abstract |
Deep video action recognition models have been highly successful in recent years but require large quantities of manually-annotated data, which are expensive and laborious to obtain. In this work, we investigate the generation of synthetic training data for video action recognition, as synthetic data have been successfully used to supervise models for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation, physics models and other components of modern game engines. With this model we generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for “Procedural Human Action Videos”. PHAV contains a total of 39,982 videos, with more than 1000 examples for each of 35 action categories. Our video generation approach is not limited to existing motion capture sequences: 14 of these 35 categories are procedurally-defined synthetic actions. In addition, each video is represented with 6 different data modalities, including RGB, optical flow and pixel-level semantic labels. These modalities are generated almost simultaneously using the Multiple Render Targets feature of modern GPUs. In order to leverage PHAV, we introduce a deep multi-task (i.e. that considers action classes from multiple datasets) representation learning architecture that is able to simultaneously learn from synthetic and real video datasets, even when their action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance. Our approach also significantly outperforms video representations produced by fine-tuning state-of-the-art unsupervised generative models of videos. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.124; 600.118;CIC |
Approved |
no |
|
|
Call Number |
Admin @ si @ SGC2019 |
Serial |
3303 |
|
Permanent link to this record |
|
|
|
|
Author |
Cristhian A. Aguilera-Carrasco; Angel Sappa; Cristhian Aguilera; Ricardo Toledo |
|
|
Title |
Cross-Spectral Local Descriptors via Quadruplet Network |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
17 |
Issue |
4 |
Pages |
873 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a novel CNN-based architecture, referred to as Q-Net, to learn local feature descriptors that are useful for matching image patches from two different spectral bands. Given correctly matched and non-matching cross-spectral image pairs, a quadruplet network is trained to map input image patches to a common Euclidean space, regardless of the input spectral band. Our approach is inspired by the recent success of triplet networks in the visible spectrum, but adapted for cross-spectral scenarios, where, for each matching pair, there are always two possible non-matching patches: one for each spectrum. Experimental evaluations on a public cross-spectral VIS-NIR dataset shows that the proposed approach improves the state-of-the-art. Moreover, the proposed technique can also be used in mono-spectral settings, obtaining a similar performance to triplet network descriptors, but requiring less training data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.086; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ ASA2017 |
Serial |
2914 |
|
Permanent link to this record |
|
|
|
|
Author |
Cristhian Aguilera; Fernando Barrera; Felipe Lumbreras; Angel Sappa; Ricardo Toledo |
|
|
Title |
Multispectral Image Feature Points |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
12 |
Issue |
9 |
Pages |
12661-12672 |
|
|
Keywords |
multispectral image descriptor; color and infrared images; feature point descriptor |
|
|
Abstract |
Far-Infrared and Visible Spectrum images. It allows matching interest points on images of the same scene but acquired in different spectral bands. Initially, points of interest are detected on both images through a SIFT-like based scale space representation. Then, these points are characterized using an Edge Oriented Histogram (EOH) descriptor. Finally, points of interest from multispectral images are matched by finding nearest couples using the information from the descriptor. The provided experimental results and comparisons with similar methods show both the validity of the proposed approach as well as the improvements it offers with respect to the current state-of-the-art. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ ABL2012 |
Serial |
2154 |
|
Permanent link to this record |
|
|
|
|
Author |
Daniel Hernandez; Antonio Espinosa; David Vazquez; Antonio Lopez; Juan C. Moure |
|
|
Title |
3D Perception With Slanted Stixels on GPU |
Type |
Journal Article |
|
Year |
2021 |
Publication |
IEEE Transactions on Parallel and Distributed Systems |
Abbreviated Journal |
TPDS |
|
|
Volume |
32 |
Issue |
10 |
Pages |
2434-2447 |
|
|
Keywords |
Daniel Hernandez-Juarez; Antonio Espinosa; David Vazquez; Antonio M. Lopez; Juan C. Moure |
|
|
Abstract |
This article presents a GPU-accelerated software design of the recently proposed model of Slanted Stixels, which represents the geometric and semantic information of a scene in a compact and accurate way. We reformulate the measurement depth model to reduce the computational complexity of the algorithm, relying on the confidence of the depth estimation and the identification of invalid values to handle outliers. The proposed massively parallel scheme and data layout for the irregular computation pattern that corresponds to a Dynamic Programming paradigm is described and carefully analyzed in performance terms. Performance is shown to scale gracefully on current generation embedded GPUs. We assess the proposed methods in terms of semantic and geometric accuracy as well as run-time performance on three publicly available benchmark datasets. Our approach achieves real-time performance with high accuracy for 2048 × 1024 image sizes and 4 × 4 Stixel resolution on the low-power embedded GPU of an NVIDIA Tegra Xavier. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.124; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HEV2021 |
Serial |
3561 |
|
Permanent link to this record |
|
|
|
|
Author |
Daniel Hernandez; Lukas Schneider; P. Cebrian; A. Espinosa; David Vazquez; Antonio Lopez; Uwe Franke; Marc Pollefeys; Juan Carlos Moure |
|
|
Title |
Slanted Stixels: A way to represent steep streets |
Type |
Journal Article |
|
Year |
2019 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
127 |
Issue |
|
Pages |
1643–1658 |
|
|
Keywords |
|
|
|
Abstract |
This work presents and evaluates a novel compact scene representation based on Stixels that infers geometric and semantic information. Our approach overcomes the previous rather restrictive geometric assumptions for Stixels by introducing a novel depth model to account for non-flat roads and slanted objects. Both semantic and depth cues are used jointly to infer the scene representation in a sound global energy minimization formulation. Furthermore, a novel approximation scheme is introduced in order to significantly reduce the computational complexity of the Stixel algorithm, and then achieve real-time computation capabilities. The idea is to first perform an over-segmentation of the image, discarding the unlikely Stixel cuts, and apply the algorithm only on the remaining Stixel cuts. This work presents a novel over-segmentation strategy based on a fully convolutional network, which outperforms an approach based on using local extrema of the disparity map. We evaluate the proposed methods in terms of semantic and geometric accuracy as well as run-time on four publicly available benchmark datasets. Our approach maintains accuracy on flat road scene datasets while improving substantially on a novel non-flat road dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118; 600.124 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HSC2019 |
Serial |
3304 |
|
Permanent link to this record |