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Abstract A novel technique for missing data matrix rank
estimation is presented. It is focused on matrices of trajec-
tories, where every element of the matrix corresponds to an
image coordinate from a feature point of a rigid moving ob-
ject at a given frame; missing data are represented as empty
entries. The objective of the proposed approach is to esti-
mate the rank of a missing data matrix in order to fill in
empty entries with some matrix completion method, without
using or assuming neither the number of objects contained
in the scene nor the kind of their motion. The key point of
the proposed technique consists in studying the frequency
behaviour of the individual trajectories, which are seen as
1D signals. The main assumption is that due to the rigidity
of the moving objects, the frequency content of the trajecto-
ries will be similar after filling in their missing entries. The
proposed rank estimation approach can be used in different
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computer vision problems, where the rank of a missing data
matrix needs to be estimated. Experimental results with syn-
thetic and real data are provided in order to empirically show
the good performance of the proposed approach.

Keywords Rank estimation · Missing data · Matrix
completion techniques

1 Introduction

Several problems can be reduced to find a low-rank matrix
approximation to the given data matrix W (e.g., structure
from motion [29], optical flow estimation [17], photometric
stereo [16], structure from sound [28], data mining [31]).
In general, the given matrix is assumed full and consid-
ered as the basic representation of the inputs. Then, accord-
ing to the problem, different processing algorithms could be
applied: singular value decomposition of W for obtaining
the shape and motion in the SFM problems [26]; clustering
of trajectories—i.e., columns of W—in the multiple object
segmentation problem [9]. Unfortunately, in real-life situa-
tions, missing or incomplete data are unavoidable, for in-
stance: variable out of range, noisy data, feature mismatch,
occluded data, are the common reasons for such missing
inputs and neglected empty entries. Therefore, most of the
aforementioned algorithms cannot be directly applied to W .

The easiest way to deal with missing data is to restrict
the process to the completely observed inputs. Another sim-
ple option is to assume a fixed user defined value for those
missed entries in the matrix—for instance, row or column
average [27, 31]. A more elaborated alternative is to use
matrix completion methods, which fill in missing entries
by suitable estimates (e.g., [8, 18, 19]). In low-dimensional
problems, it is better to use matrix completion methods that
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take into account the fact that the data matrix has a reduced
rank. For instance, there exist several problems in the com-
puter vision framework where data are stacked into a low-
rank matrix of trajectories W2f ×n, where f and n are the
number of frames and feature points respectively (from now
on it will be referred as W ). The factorization technique [29]
can be used to decompose this matrix W into the product of
two matrices A2f ×r and Br×n, where r is the rank of W .
The product AB gives the best rank-r approximation to W .
The Alternation technique [35] is a factorization technique
commonly used when there are missing data in W (e.g.,
[6, 12, 15, 25]). This iterative algorithm starts with an initial
A0 or B0 random factor and, at each iteration k, computes
alternatively each of the factors Ak and Bk , until the prod-
uct AkBk converges to the known values in W . This product
is used to fill in missing entries in W . The main drawback
of the Alternation technique is that it depends on the initial-
ization and it converges to a local minimum when there are
missing data in the matrix W .

More recently, a spectrally optimal factorization method
has been proposed in [3]. It is based on [1] and gives a global
solution for a particular pattern of missing data known as
Young diagram. Unfortunately, in the structure from mo-
tion problem, the pattern of the missing data consists in
two or more Young diagrams. Hence, in this case the so-
lution proposed by [3] is sub-optimal. Candes et al. [7]
present a matrix completion method that uses convex op-
timization. They propose to minimize the nuclear norm of
the matrix W , which is the sum of their singular values,
instead of minimizing the rank of W . Haldar et al. [13]
point out that, although nuclear norm minimization (NNM)
is effective, it can be computationally demanding. They pro-
pose an incremented-rank version of the PowerFactoriza-
tion [15] (IRPF) to fill in missing entries in W . Reported
results in [13] empirically show that the performance of the
IRPF at filling in low-rank matrices is better than the NNM.

The matrix completion techniques, although appropriate
to generate a full matrix by filling in missing data, need some
additional prior knowledge of the problem to avoid wrong
results. Concretely, a proper matrix rank assumption would
help to find the right solution. Focussing on this problem,
in the current paper a novel approach for rank estimation is
presented, which could be used later on for filling in miss-
ing entries by means of a matrix completion method. A pre-
liminary version of this rank estimation technique was in-
troduced in [20] for the motion segmentation problem. It is
expected that other applications based on low-rank data sets
analysis, where missing data are often found, could benefit
from the proposed approach (e.g., [5, 24]).

The motivation to define the rank estimation technique
[20] was that, although several techniques have been pro-
posed for the multiple object motion segmentation problem
(e.g., [14, 22, 33]), most of them assume a full matrix of tra-
jectories W . In those cases, the rank of the matrix W can be

estimated by examining the ratio between its singular val-
ues (e.g., [37]). However, trajectories are often incomplete
or split due to objects occlusions, errors on the tracking or
simply because they are not more in the camera field of view.
Unfortunately, when the matrix of trajectories contains miss-
ing data, the rank cannot be directly computed. Recall that
the rank of the matrix W depends on both the number of
objects and their motion. In [32], and more recently in [34],
Vidal et al. propose an approach able to deal with missing
data in the multiple object case. Their approach consists in
fixing the rank of W to five and then applying a factorization
technique to project the point trajectories from R

2f to R
5,

where f is the number of frames. That projection is pro-
posed by using the fact that the maximum dimension of each
motion subspace is four, in the case of a rigid object. Then,
projecting onto a generic subspace of dimension five will
preserve the number and dimension of motion subspaces.
This assumption could give poorly recovered missing en-
tries, when the number of different objects and motions in-
creases. Experimental results provided in [20] show that the
error obtained in the missing entries recovering can affect
the motion segmentation results.

In the current paper a novel approach to estimate the rank
is proposed, instead of defining it beforehand. The proposed
approach estimates the rank without using neither the num-
ber of rigid objects nor the kind of motion. It is based on the
fact that the frequency spectra of the motion, treated as a sig-
nal and depicted as columns in the input matrix W , should be
preserved after recovering missing entries. Behind this idea
there is the assumption that, due to the rigidity of the mov-
ing objects, the behavior of missing and known data, stud-
ied as trajectories (columns of W ), is the same; therefore,
both generate a similar spectral representation. Once the
rank has been estimated and used for obtaining a full matrix
through factorization, applications such as motion segmen-
tation could be performed using classical approaches [36].

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the proposed technique. Experimental re-
sults, using scenes containing different numbers of objects,
are presented in Sect. 3 in order to empirically show the
performance of the proposed rank estimation technique. Fi-
nally, concluding remarks are summarized in Sect. 4.

2 Missing Data Matrix Rank Estimation

As mentioned in Sect. 1, matrix completion methods can
be used to fill in missing entries in the particular context
of computer vision. Next, the Alternation technique [35],
which has been widely used in the computer vision frame-
work (e.g., [6, 12, 15]), is briefly presented since it is used
as a matrix completion method in the current approach. The
proposed rank estimation technique is also valid with other
matrix completion methods, as it is shown in Sect. 3.3.
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Fig. 1 (a) Scene defined by three synthetic objects (two cylinders and a sculptured surface). (b) Feature point trajectories plotted in the image
plane. (c) Trajectory matrix with 30% of missing data (W30%missing)

2.1 Alternation Technique

Given a matrix Wm×n with rank r < min{m,n}, the aim is
to find Am×r and Br×n such that minimize the following
expression:

‖W − AB‖2
F (1)

where ‖ · ‖F is the Frobenius matrix norm [11]. Working
with missing data, the expression to minimize is:

‖W − AB‖2
F =

∑

i,j

|Wij − (AB)ij |2 (2)

where i and j correspond to the index pairs where Wij is
defined.

The Alternation technique uses the fact that if one of the
factors (A or B) is known, the other factor can be computed
by solving the least squares problem (2). Therefore, the two
factors are computed alternately, until the product AB con-
verges to W . Hence, by multiplying the resulting matrices A

and B , a full matrix, which is the best rank-r approximation
to W , is obtained.

In the case of a single rigid moving object, and under
affine camera model, the rank of the matrix of trajecto-
ries W , is at most 4 (see [29], for details). However, when
this idea is extended to the multiple objects case, the rank
of matrix W is not bounded when the number of objects
in the scene and the kind of motion are unknown. Further-
more, it is not easy to estimate due to the missing entries.
Therefore, matrix rank estimation becomes a chicken-egg
problem, since the rank value is needed for recovering miss-
ing entries and computing an estimation of the full matrix.
Moreover, it should be noticed that although several ranks
could be tested for filling in missing entries, there is not a
direct way to measure the goodness of recovered data in or-
der to define which is the most appropriated rank value. The
next section presents a brief study of results that would be
obtained if only known entries in W were used for comput-
ing its rank.

2.2 Partial Information versus Full Information

This section shows the importance of using some kind of in-
formation about missing entries to estimate the correct rank
of W . Several tests were considered obtaining similar con-
clusions (i.e., different percentages of missing data, trajec-
tory matrices defined by the motion of different number of
objects, different amount of noise, etc.).

The study presented in this section is performed by us-
ing a particular data set corresponding to a synthetic scene,
defined by three rigid objects moving independently. Fea-
ture points are distributed over the surface of the objects
and tracked through several frames. A full matrix Wfull is
generated and then a trajectory matrix with a 30% of miss-
ing data (W30%missing) is obtained by removing information,
simulating the behavior of tracked feature points (more in-
formation about experiments set up is given in Sect. 3). Fig-
ure 1(a) shows the synthetic scene used through this section;
feature point trajectories, in the image plane, are presented
in Fig. 1(b). Finally, a trajectory matrix with a 30% of miss-
ing data is presented in Fig. 1(c). The half-top of this ma-
trix corresponds to x coordinates of feature points; while
half-bottom to y coordinates. White elements correspond to
empty entries in the matrix; on the contrary black (or grey)
elements in the matrix represent known entries in the matrix.

The first stage is to fill in empty entries by means of a
matrix completion method assuming different rank values
(in our case the Alternation technique is used). For every as-
sumed rank value a different solution is obtained. This sec-
tion aims at showing that a criterion based only on known
entries will give a wrong rank value estimation. The used
criterion consists in selecting the rank value of the matrix
with a minimum root mean square error (rms). That is, in
the current example, the aim is to select the rank for which
the matrix obtained with the product A2f ×rBr×p minimizes
the following expression:

rms = ‖W30%missing − A2f ×rBr×p‖F /
√

q (3)
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Fig. 2 (a) The rms as a function of the rank values for the missing data
matrix presented in Fig. 1(c), when only known entries in W30%missing
are considered. Hence, the rms measures how good the known entries
are approximated. (b) The rmsfull as a function of the rank when all

data points in Wfull are considered. The rmsfull measures how good the
initially known data are approximated as well as how good missing
data are recovered

where 2f and p are the number of rows and columns in W

and q is the number of known entries in W30%missing. On
the other hand, since the Wfull matrix is known, entries filled
in during the matrix completion are also compared with the
original values by means of:

rmsfull = ‖Wfull − A2f ×rBr×p‖F /
√

q (4)

where q is the number of all entries in Wfull. Notice that
rmsfull can be computed, since in our experiments all the en-
tries in Wfull are initially known. Hence, two different rms
values are computed; the first by only taking into account
known entries in W30%missing, while the second by consider-
ing all the entries in Wfull.

The result of this comparison is presented in Fig. 2. It can
be seen that the trend of these plots is different. Furthermore,
the minimum values are obtained at different rank values. In
the first case, when only known entries in W30%missing are
used, the best rank estimation corresponds to 15 (Fig. 2(a));
while in the second case, when all entries in Wfull are used,
the best rank estimation is 11 (Fig. 2(b)). Note that the cor-
rect rank value is 12, which is quite similar to the value esti-
mated with the rmsfull; the correct rank value of Wfull is di-
rectly obtained by computing its singular values [11] (Fig. 3
shows the 12th first singular values of Wfull, in logarithmic
scale). In this particular example missing entries are filled in
better considering r = 11 instead of r = 12. This can be due
to the random initialization of Alternation.

The previous result can be understood by studying the
way missing data in a single trajectory are recovered, after
assuming different rank values. Figure 4 presents the trajec-
tory of a given feature point (i.e., a single column in Wfull),

Fig. 3 Singular values of the initially full matrix Wfull (only the first
12 ones are plotted), in logarithmic scale; notice that the ratio between
the 11th and 12th singular values is larger than the rest of all previous
ratios

and also the filled in data considering different rank values
(concretely, from r = 9 up to r = 13); a thicker line corre-
sponds to known values in W30%missing, a thinner line shows
original values that were removed to generate the missing
data matrix and finally, a dashed line corresponds to the
filled in entries. An enlargement is presented in the cases
of r = 9,10,12 and 13 in order to have a better visualiza-
tion due to the high values that take the filled in entries in
the column (note that in these cases dashed lines go out the
range of plot). As an illustration, the whole filled in trajec-
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Fig. 4 (top)–(left) Trajectory of a given feature point (column in Wfull). (From top to bottom, from left to right) Filled in data (dashed line)
assuming rank values from 9 up to 13

tory obtained in the case of r = 12 is also plotted. The objec-
tive of presenting Fig. 4 is to show the way missing entries
are filled in by assuming different rank values. It can be ap-
preciated that in all the examples known data are preserved.
However, missing data are almost correctly recovered when
the assumed rank value is 11, as presented in Fig. 2(b).

2.3 Proposed Approach

Having in mind that the goodness of recovered data cannot
be measured, since in general missing entries are not known,
an approach based on the study of changes on the input ma-
trix after recovering missing data is proposed. A preliminary
version has been presented in [20]. Since the rank of W can-
not be computed, different rank values (r) are tested, ob-
taining a full matrix for each case. Then, by using both the
initially known and recovered missing entries in W a novel
measure of goodness is introduced. The underlying idea is
that, since feature points trajectories belong to surfaces of
rigid objects, the motion generated by recovered missing en-
tries should be similar to the one of the initial known en-
tries. This motion similarity is identified with the fact that
the frequency spectra of the input matrix W should be pre-
served after recovering missing data. It is based on an energy
and frequency content preservation. In order to study the
frequency content of the matrices, the Fast Fourier Trans-
form (FFT) is applied to each of the columns of the full ma-
trices (obtained by using different rank values as presented

below) and also to those of the input matrix W (adding ze-
ros to its missing entries).1 Analogous results are obtained
with the Discrete Cosine Transform (DCT). Since the idea
is to study the trajectories along the frames, only columns
of the matrices are considered, instead of using rows or two
dimensions at the same time. Concretely, the x and y co-
ordinates of the trajectories, which are stacked separately
in W , as mentioned in Sect. 2.2, are considered as the real
and imaginary part of each column when the FFT is applied.
In the preliminary approach [20], the x and y coordinates of
each trajectory are considered as a 1D signal. The goal of
splitting trajectories up into real and imaginary parts is to
avoid the artificial step between the x and y coordinates that
introduces a ripple in the frequency domain.

In a different approach, Akhter et al. [4] describe the time
varying 3D trajectories of a non-rigid object as a linear com-
bination of trajectory bases for which they choose the Dis-
crete Cosine Transform (DCT). Concretely, they describe
the 3D trajectories by using k vectors of the DCT basis. The
idea of the approach proposed in the current paper is differ-
ent: as mentioned above, the 2D trajectories (columns of W )
are interpreted as 1D signals and the modulus of the FFT of
these signals is used to study the goodness of the filled in
missing data in these 2D trajectories.

1Similar results are obtained by adding the mean of the corresponding
column to the missing entries of W .
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Fig. 5 Modulus of the FFT (logarithmic scale) when trajectories are split up into real and imaginary parts: (a) of the original matrix W30%missing;
(b)–(f) of the filled in matrices considering rank values from 9 up to 13

A methodology similar the one proposed in [10] is pre-
sented, although for a completely different problem. The
proposed approach works as follows:

Algorithm Set r = r0, compute the modulus of the FFT
(denoted as | · | from now on) of the original input matrix W

(F = |FFT(W)|) and repeat the following steps until r =
rmax

2:

1. By using the current rank r , apply a matrix completion
technique to W to obtain a full matrix of trajectories, Wr

(in our experiments the result of Alternation technique is
used to fill in missing data in W ).

2. Apply the FFT to Wr and compute its modulus: Fr =
|FFT(Wr)|.

3. Compute the following difference:

e(r) = ‖F − Fr‖F . (5)

4. If r < rmax, increase r = r + 1 and go to step 1.

Solution The Wr that gives the minimum value of e is the
best full matrix and the corresponding r is the estimation

2This upper-bound could be automatically computed by using some
criteria for stopping the iteration. This will reduce CPU time, but it is
out of scope of the current manuscript.

of the rank of W we were looking for. In the preliminary
version [20], the estimated r was the one that gave the first
local minimum of e.

In the current experiments, an initial rank r0 = 2 is as-
sumed. In [20], r0 was set to 5, which could give wrong
rank estimations in the case of dependent motions (the rank
of W can be 3 or 4 in those cases).

The three object scene presented in the previous section is
now used to illustrate the performance of the proposed mea-
sure of goodness. The same trajectory matrix, with a 30%
of missing data, is used (W30%missing). The modulus of the
FFT , of the obtained filled matrices considering rank val-
ues from 9 up to 13 are plotted in Fig. 5. Additionally, the
modulus of the original input matrix (W30%missing) is also
plotted (Fig. 5(a)). It can be appreciated that, the most sim-
ilar FFT modulus to the one of the initial matrix (Fig. 5(a))
is obtained in the case of r = 11 (Fig. 5(d)).

Figure 6 shows the difference between the modulus of
FFT(W30%missing) and each one of the FFTr , obtained con-
sidering different rank values. Concretely, the value ob-
tained with (5) is plotted. It can be seen that the minimum of
e is found at r = 11, which is the same that the one obtained
in the previous section when rmsall is considered as a mea-
sure of goodness (see Fig. 2). Finally, it should be noticed
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Fig. 6 Difference between F and each one of the Fr (see (5)); the
minimum is found at r = 11

that the shape of the plot presented in Fig. 6 is quite sim-
ilar to the one obtained when all data points in Wfull were
considered for plotting the rmsfull as a function of the rank,
compare Fig. 6 with Fig. 2(b).

Hence, this measure gives similar results than the one that
uses all the entries in the matrix of trajectories. The advan-
tage is that in this case, the initially missing data are not
used.

3 Experimental Results

A study of the performance of the proposed rank estimation
approach is presented in this section. Sequences with differ-
ent numbers of objects and percentages of missing data are
considered. Synthetic and real data, introduced in Sect. 3.1,
are used to validate results.

Experimental results are focused on the use of the Al-
ternation technique as a matrix completion method (see
Sect. 3.2). Results obtained by considering two differ-
ent global matrix completion techniques are reported in
Sect. 3.3 in order to show the validity of the proposed ap-
proach with other matrix completion techniques. In par-
ticular, results obtained with the Singular Value Decom-
position (SVD) [11] and the SPectrally Optimal Comple-
tion (SPOC) [3] are included.

3.1 Data

Synthetic data sets are generated by randomly distributing
3D feature points over the surfaces of a cylinder and a trian-
gular mesh (nodes) representing a sculptured surface. Tak-
ing these objects, different sequences are obtained by rotat-
ing and translating both of them. At the same time, the cam-
era also rotates and translates. Different numbers of cylin-

Fig. 7 Objects used in the real data experiments

Fig. 8 (a) First frame of the three objects sequence. (b) First frame of
the two objects sequence

ders and sculptured surfaces are considered in order to gen-
erate sequences with multiple objects.

The same procedure applied to the synthetic data is also
used to process real data. Two different objects are consid-
ered (see Fig. 7). From each object, a real video sequence
with a resolution of 640 × 480 pixels is generated. A single
rotation around a vertical axis is performed to each of the ob-
jects. Feature points are selected by means of a corner detec-
tor algorithm and only points distributed over the squared-
surfaces (box and cylinders) visible in all the frames are con-
sidered. More details about the corner detection and tracking
algorithm can be found in [23]. Full trajectory matrices cor-
responding to sequences of multiple objects are generated
by merging different matrices of single object trajectories,
after swapping x and y coordinates. Overlapping between
objects is avoided for the sake of presentation simplicity
by applying translations. Furthermore, sequences from the
benchmark presented in [30] are also tested. Concretely, in
the current paper, results obtained with two checkerboard se-
quences that contain two and three objects respectively are
reported. The first frame of each of these two sequences is
shown in Fig. 8.

It should be noticed that since real images usually con-
tain noisy data all singular values are nonzero. Therefore,
the smallest ones must be truncated in order to estimate the
correct rank of W . Since it is difficult to set the appropri-
ate threshold, [21] proposes the model selection for rank de-
tection. Based on that, the following expression is used to
estimate the rank of a full matrix in presence of noise:

rm = arg min
r

λ2
r+1∑r

j=1 λ2
j

+ μr, (6)
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where λi corresponds to the i-th singular value of the ma-
trix, and μ is a parameter that depends on the amount of
noise. The r that minimizes this expression is considered as
the rank of W . The higher the noise level is, the larger μ

should be [30]—in our sequences with real data, this para-
meter has been empirically set to μ = 10−7, which gives the
most coherent rank value, taking into account the motion
and number of objects in each studied real sequence.

3.2 Rank Estimation by Considering a Local Matrix
Completion Method: The Alternation Technique

As mentioned in Sect. 1, the Alternation technique con-
verges to a local solution when there are missing data in the
matrix of trajectories W . In order to avoid a wrong solution
associated with the random nature of the Alternation initial-
ization, 25 attempts are performed for each sequence and
each percentage of missing data. Recall that the Alternation
starts with an initial A0 or B0 random factor and proceeds
until the product AkBk converges to the known values in W .
This motivates the use of a quartile-based representation of
the results as detailed below.

From a given full matrix, missing data are automatically
generated by removing parts of random columns, simulating
the behavior of tracked features. The removing process ran-
domly selects a cell in the given column, splitting it up into
two parts. One of these parts is randomly removed, simulat-
ing features missed by the tracker or new features detected
after the first frame, respectively. Since the full matrix is ini-
tially known, its rank can be directly computed by means
of its singular values [11] and compared with the estimated
rank obtained with the proposed approach.

The experimental results are focused on matrices of tra-
jectories. However, a preliminary study, which takes into ac-
count different kind of low-rank matrices is carried out in the
next section.

3.2.1 General Matrix Completion and Rank Estimation

This section aims at showing that the proposed rank esti-
mation technique can be applied to different low-rank data
matrices. Concretely, the following cases are studied: (i) a
random matrix; (ii) a matrix of trajectories with randomly
permuted rows (the idea is to simulate non-smooth camera
motion); (iii) the same matrix of trajectories, with the orig-
inally given rows. Given a low-rank missing data matrix,
unknown entries are filled in with the Alternation technique
by considering different rank values. Then, three different
measures of goodness are computed for each rank value, in
order to know which rank gives the best filled in matrix. In
particular, the rms, the rmsall and the difference between F

and Fk (5) are computed. The three studied matrices in this
experiment have the same size (180 × 145) and the same
rank value (r = 8).

In a first experiment, a random rank-8 matrix is consid-
ered. Figure 9 shows the results obtained in this case. Ac-
tually, the mean of the obtained error at 25 attempts is plot-
ted, for each rank value. The smallest error value is high-
lighted with a dashed circle in the plots. It can be seen that
the smallest error is obtained for r = 8 (independently of
the measure of goodness chosen), when there is no noise in
the data (see Fig. 9(a), (b) and (c)). However, when work-
ing with noisy data, the rms decreases as the rank value in-
creases (Fig. 9(d), (e) and (f)). Therefore, another measure
of goodness is needed to be used. Notice that the trend of
the plots obtained with the rmsall (Fig. 9(b) and (e)) and
with the proposed measure of goodness (Fig. 9(c) and (f))
are very similar.

In a second experiment, the studied sequence contains
two cylinders, which are generated as explained in Sect. 3.1.
Feature point trajectories in the image plane are plotted in
Fig. 10(a), while the obtained matrix of trajectories Wfull is
shown in Fig. 10(b). The rank of Wfull is 8. First, the rows
of the matrix are randomly permuted, in order to simulate
a non-smooth movement of the camera. Results are plotted
in Fig. 11. In this case the rank is not as properly estimated
as in the previous experiment, for any measure of goodness.
It can be concluded that the proposed rank estimation tech-
nique is not as suitable for sequences with a high degree
of non-smooth camera motion. Notice that the trend of the
plots obtained with rmsall and with the proposed measure
of goodness are similar (see Fig. 11(b) and (c)). Again, it is
shown that the rms cannot be used as a measure of goodness
with noisy data: the estimated rank is 12 in this case, as it
can be seen in Fig. 11(d).

Finally, the Alternation technique is applied to the ma-
trix plotted in Fig. 10(b). Figure 12 shows the results ob-
tained in this case. Results are similar to the ones obtained in
the random data matrix: the smallest error is obtained when
r = 8, except when the rms is used in the noisy data case
(see Fig. 12(d)).

Experimental results presented in Sects. 3.2.2 and 3.2.3
are focused on matrices of trajectories.

3.2.2 Experiments with Synthetic Data

Figure 1(a) shows an illustration of the first studied se-
quence with synthetic data. It is defined by 100 frames con-
taining 340 feature points (114 and 119 from two cylin-
ders and 107 from a sculptured surface). Feature point tra-
jectories are depicted in Fig. 1(b) and a trajectory ma-
trix, for the case of 30% of missing data, is presented in
Fig. 1(c). Figure 13(a) shows the estimated rank values con-
sidering the sequence of Fig. 1 and different percentages
of missing data (the rank of the full matrix is 12). The
rms values, which study how the initially known values
are recovered with the Alternation technique, are plotted in
Fig. 13(b).
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Fig. 9 Random matrix Wfull. (a) The rms as a function of the rank
values, no noisy data case. (b) The rmsall as a function of the rank
values, no noisy data case. (c) Difference between F and each one of
the Fk (see (5)), no noisy data case. (d) The rms as a function of the

rank values, noise is added to Wfull. (e) The rmsall as a function of the
rank values, noise is added to Wfull. (f) Difference between F and each
one of the Fk , noisy data case

Fig. 10 (a) Feature point trajectories plotted in the image plane. (b) Full data trajectory matrix (Wfull), with r = 8

Analogously, the obtained results considering sequences
of 5, 7 and 9 objects are plotted in Figs. 14–16. In these se-
quences, the rank of each input full matrix is 16, 20 and 25,
respectively. In general, the rank is quite well estimated even
with a percentage of missing data of about 40%, which is a
very remarkable performance considering for instance the
large number of objects contained in the last scene—nine

objects. Notice that no prior knowledge about the objects
contained in the scene nor about their motion is given. Fig-
ures 14(c), 15(c) and 16(c) show the rms obtained when the
Alternation is applied to the missing data matrix, consider-
ing the corresponding rank value. Figures 13(a) and 14(b)
show that in most of the cases the estimated rank is very
close to the correct value. In fact, the obtained error is not
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Fig. 11 Matrix of trajectories Wfull obtained by randomly permuting
the rows of the originally matrix shown in Fig. 10(b). (a) The rms as
a function of the rank values, no noisy data case. (b) The rmsall as a
function of the rank values, no noisy data case. (c) Difference between

F and each one of the Fk (see (5)), no noisy data case. (d) The rms
as a function of the rank values, noise is added to Wfull. (e) The rmsall
as a function of the rank values, noise is added to Wfull. (f) Difference
between F and each one of the Fk , noisy data case

Fig. 12 Matrix of trajectories Wfull of Fig. 10(b). (a) The rms as a
function of the rank values, no noisy data case. (b) The rmsall as a
function of the rank values, no noisy data case. (c) Difference between
F and each one of the Fk (see (5)), no noisy data case. (d) The rms

as a function of the rank values, noise is added to Wfull. (e) The rmsall
as a function of the rank values, noise is added to Wfull. (f) Difference
between F and each one of the Fk , noisy data case
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Fig. 13 Three objects, rank of full matrix 12: (a) estimated rank values
for different percentages of missing data; (b) rms obtained with Alter-
nation in logarithmic scale. Concretely, boxes enclose data in between

lower and upper quartiles (medians are represented by horizontal lines
in thinner regions). Vertical lines, outside these boxes, correspond to
the rest of data

Fig. 14 Five objects, rank of full matrix 16: (a) feature point trajectories plotted in the image plane; (b) estimated rank values for different
percentages of missing data; (c) rms obtained with Alternation in logarithmic scale

Fig. 15 Seven objects, rank of full matrix 20: (a) feature point trajectories plotted in the image plane; (b) estimated rank values for different
percentages of missing data; (c) rms obtained with Alternation in logarithmic scale

significant in applications such as motion segmentation. For
the case of the scene with seven objects (Fig. 15(b)) the max-
imum error is reached in the case of 20% of missing data; it

is about 20% the correct value. Note that in the rest of cases
that error is less than 15% of the correct rank value. Some
outliers appear in the case of 40% of missing data. Finally,
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Fig. 16 Nine objects, rank of full matrix 25: (a) feature point trajectories plotted in the image plane; (b) estimated rank values for different
percentages of missing data; (c) rms obtained with Alternation in logarithmic scale

Fig. 17 First sequence, rank of full matrix 6: (a) full feature point trajectories plotted in the image plane; (b) estimated rank values for different
percentages of missing data; (c) rms obtained with Alternation in logarithmic scale

for the scene with nine objects (Fig. 16(b)), the maximum er-
ror appears when 40% of missing data are considered. That
estimated rank value is 28% higher than the correct one. In
the rest of cases the rank is estimated with an error smaller
than 20% of the correct value.

Once the rank is estimated and a full matrix of trajec-
tories is obtained, further post processing techniques (e.g.,
motion segmentation, SFM) that require a full input matrix
of trajectories can be performed. It should be highlighted
that the estimated rank is always considerable closer to the
correct value than when a predefined fixed value was used
(e.g., five, as in [32]). It has been shown in [20] that results
of further processing (e.g., motion segmentation) depend on
the accuracy of the estimated rank.

3.2.3 Experiments with Real Data

The first studied sequence with real data is generated by us-
ing the first object twice (Fig. 7(a)). The obtained full feature
point trajectories are plotted in the image plane in Fig. 17(a);
it contains 174 feature points tracked through 101 frames.
A second sequence is generated considering both objects to-

gether (Fig. 7(a) and (b)); the corresponding full trajecto-
ries in this second case are plotted in Fig. 18(a). It is de-
fined by 61 frames and 275 feature points (87 from the first
object and 188 from the second one). Finally a three ob-
ject sequence is generated by considering twice the first ob-
ject (Fig. 7(a)) together with the second object (Fig. 7(b)).
This third sequence contains 362 feature points (87, 87 and
188 from the first and second object respectively), which are
tracked through 61 frames. The obtained trajectories are de-
picted in Fig 19(a).

Figure 17(b) shows the estimated rank values for the first
sequence. The rank of the full matrix of trajectories is 6; it
is obtained by using (6) and by setting μ = 10−7. In this
particular case, the objects contained in the scene define a
degenerate motion. That is, each one of them does not gen-
erate a full rank motion matrix (rank 4). In this real data
experiment the estimated rank takes a wider range of values
than in the synthetic data case. Similar results are obtained
with the second sequence, in which the full matrix has also
rank 6. Figure 18(b) shows the estimated rank values. Fi-
nally, results for the three object sequence are presented in
Fig. 19(b). In this case, the rank of the full matrix is 7. In the
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Fig. 18 Second sequence, rank of full matrix 6: (a) full feature point trajectories plotted in the image plane; (b) estimated rank values for different
percentages of missing data; (c) rms obtained with Alternation in logarithmic scale

Fig. 19 Third sequence, rank of full matrix 7: (a) full feature point trajectories plotted in the image plane; (b) estimated rank values for different
percentages of missing data; (c) rms obtained with Alternation in logarithmic scale

Fig. 20 (Color online) Checkerboard sequence containing 2 objects, rank of full matrix 6: (a) full feature point trajectories plotted in the image
plane; (b) estimated rank values for different percentages of missing data; (c) rms obtained with Alternation in logarithmic scale

three examples the rms values, computed with the values
initially known in each case, are quite large (see Figs. 17(c),
18(c), 19(c)), in comparison with the scenes with synthetic
data, since the real images contain noisy data.

Finally, sequences from the benchmark presented in [30]
are considered. Results obtained with the first sequence
(Fig. 8(a)), taking 2 of the objects contained in the scene,

are shown in Fig. 20. The rank of the full data matrix, ob-
tained by assuming μ = 10−7, is 6. The numbers of frames
and feature points are 24 and 341, respectively. With such a
few number of frames, a 40% of missing data would result
in a matrix without enough information. Therefore, the per-
centages of missing data considered with these sequences
are from 10% up to 30%. The first object, whose trajecto-
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Fig. 21 (Color online) Checkerboard sequence containing 3 objects, rank of full matrix 8: (a) full feature point trajectories plotted in the image
plane; (b) estimated rank values for different percentages of missing data; (c) rms obtained with Alternation in logarithmic scale

Fig. 22 Random matrix Wfull. (a) The rmsall as a function of the rank
values, no noisy data case. (b) Difference between F and each one of
the Fk (see (5)), no noisy data case. (c) The rmsall as a function of

the rank values, noise is added to Wfull. (d) Difference between F and
each one of the Fk , noisy data case

ries are marked in black in Fig. 20(a), rotates on one axis
and translates on a plane orthogonal to this axis; the camera
rotates around one axis (static points are marked in blue in
Fig. 20(a)). The rank value is quite well estimated for every
percentage of missing data (notice that the median of the
values is 6 for a percentage of missing data below 30% and

7 in the 30% case). The maximum error is obtained in the
case of 30% of missing data.

Figure 21 shows results obtained with the second se-
quence (Fig. 8(b)), which contains 3 objects. The numbers of
frames and feature points are 30 and 411, respectively. The
rank of the full data matrix, obtained by assuming μ = 10−7,
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Fig. 23 Matrix of trajectories obtained by randomly permuting the
rows of the originally given matrix of trajectories Wfull. (a) The rmsall
as a function of the rank values, no noisy data case. (b) Difference be-

tween F and each one of the Fk (see (5)), no noisy data case. (c) The
rmsall as a function of the rank values, noise is added to Wfull. (d) Dif-
ference between F and each one of the Fk , noisy data case

is 8. Trajectories plotted in the image plane are depicted in
Fig. 21(a). The first object (blue trajectories) rotates, the sec-
ond one (black trajectories) rotates and translates and the
camera rotates and translates (static points are marked in
red). The rank is quite well estimated for any percentage of
missing data (notice that the median of the estimated values
is 9 in all the cases). Again, the maximum error is obtained
in the case of 30% of missing data.

Although in the experiments with real data the estimated
rank takes, in general, a wider range value than in the exper-
iments with synthetic data, the median of all the rank values
is equal or quite similar to the correct one (±10% in most
cases).

3.3 Rank Estimation Technique by Considering Global
Completion Techniques

The main objective of including this section is to show that
the proposed rank estimation technique is also valid with
other matrix completion methods. Therefore, only experi-
ments with sequences that contain synthetic data are pro-

vided. Concretely, the experimental results are analogous to
the ones presented in Sect. 3.2.1 for the case of the Alterna-
tion technique. The main advantage of using a global tech-
nique is that only one attempt is needed, since results do not
depend on the initialization.

Actually, this section aims at showing that, independently
of the matrix completion method used, the smallest rms does
not always correspond to the correct rank value of W , as it
was shown in Sect. 2.2 and Sect. 3.2.1.

3.3.1 Singular Value Decomposition (SVD)

Given a matrix of trajectories Wm×n, the Singular Value De-
composition gives a global optimal solution when approxi-
mates W by a low-rank matrix. The main drawback of the
SVD is that it cannot be used with missing data in W .

In a first experiment, a random rank-8 matrix is con-
sidered, as in Sect. 3.2.1. Figure 22(a) shows the obtained
rmsall when Wfull is free of noise. It can be seen that
rmsall = 0 for r ≥ 8 (recall that the rank of Wfull is 8). Fig-
ure 22(b) shows the error obtained by comparing the modu-
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Fig. 24 Matrix of trajectories Wfull of Fig. 10(b). (a) The rmsall as a
function of the rank values, no noisy data case. (b) Difference between
F and each one of the Fk (see (5)), no noisy data case. (c) The rmsall

as a function of the rank values, noise is added to Wfull. (d) Difference
between F and each one of the Fk , noisy data case

lus of the FFT (see (5)). Notice that the plot is very similar
to the previous one. Again, the minimum error is obtained
when r = 8, which is the correct one. However, in real situ-
ations matrices of trajectories use to have noise. In order to
simulate these situations, a Gaussian noise with standard de-
viation σ = 1 and zero mean is added to the 2D feature point
trajectories. In these cases, the rmsall and the proposed mea-
sure of goodness decrease as the rank value increases, as it
can be seen in Fig. 22(c) and (d). Both measures of goodness
decrease as the rank value increases.

The second experiment, consists in taking the matrix of
trajectories shown in Fig. 10(b). The SVD is applied to the
full matrix Wfull (Fig. 10(b)), but their rows have been ran-
domly permuted. Thus, in order to simulate a non-smooth
camera motion. Figure 23 shows that similar results to the
previous ones are obtained.

Finally, in a third experiment, the SVD is applied directly
to the matrix Wfull (Fig. 10(b)). Results are plotted in Fig. 24.
Again, the smallest error (both rmsall and the difference be-
tween F and Fk) is obtained when r = 8, only in the case of
no noise in the data.

Fig. 25 Mask used to enforce a Young diagram in the missing data
matrix. Black entries in the mask correspond to missing data, while
white entries correspond to known data in the matrix of trajectories.
A percentage of missing data of about 30% is generated

3.3.2 SPectrally Optimal Completion (SPOC)

Aguiar et al. [3] present the SPectrally Optimal Com-
pletion (SPOC) algorithm, which is a matrix completion
method that proposes a global optimal solution, for particu-
lar patterns of missing entries. Concretely, this method gives
a global solution when missing entries produce a Young di-
agram. That is, when missing entries are arranged in the
first n1 entries of the 1st row, the first n2 entries of the
2nd row, . . . , the first nk entries of the kth row, such that
n1 ≥ n2 ≥ · · · ≥ nk . Figure 25 shows an example of a ma-
trix where missing entries, which correspond to the black
entries in the matrix, produce a Young diagram. The SPOC
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Fig. 26 Random matrix W that contains 30% of missing data. (a) The
rmsall as a function of the rank values, no noisy data case. (b) Dif-
ference between F and each one of the Fk (see (5)), no noisy data

case. (c) The rmsall as a function of the rank values, noise is added to
Wfull. (d) Difference between F and each one of the Fk , noisy data case

algorithm is based on inequalities presented in [1] that re-
late the singular values of a matrix with those of its sub-
matrices. The source code of the SPOC, publicly available
at http://users.isr.ist.utl.pt/~aguiar/spoc.m, has been used in
this experiment. See [3] for more details on the method.

Unfortunately, working with a matrix of trajectories, the
pattern of missing data consists of two or more Young di-
agrams, as pointed out by [2]. In order to tackle that case,
a Young-wise optimal iterative algorithm is proposed in [3].
This iterative algorithm gives a sub-optimal solution. Since
the goal at this section is to test global methods, it is en-
forced that missing data of the matrix of trajectories W

produce a Young diagram in these experiments. Figure 25
shows the mask M30×145 applied to the studied full matrices
Wfull in this section to enforce that missing entries produce a
Young diagram. Concretely, this mask generates a percent-
age of missing data of about 30% in the matrix of trajecto-
ries.

Experimental results are carried out as in Sect. 3.2.1 and
as in the SVD case (Sect. 3.3.1). The first experiment con-
sists in considering a random rank-8 matrix Wfull with the

same size as the mask shown in Fig. 25, that is 30 × 145.
A matrix W with 30% of missing data is obtained by mul-
tiplying Wfull by the mask. Figure 26 shows the errors ob-
tained by considering rank values from 2 up to 20. The rms
obtained by taking only the initially known entries is 0 for
any rank value, due to the fact that the initially known data
are not modified by the SPOC algorithm. Hence, another
measure is needed to be defined in order to know which rank
gives the best filled in matrix. As all data are initially known
in Wfull, the rmsall can be computed. As it can be seen in
Fig. 26(a), the smallest rmsall is obtained for r = 8, which
is the rank of Wfull. Figure 26(b) shows the error obtained
by comparing the modulus of the FFT (see (5)). It can be
seen that the trend of the plot is quite similar to the previous
one. The smallest error is also obtained when r = 8. Anal-
ogous conclusions can be derived from the results obtained
when noise is added to the matrix W (see Fig. 26(c) and (d);
Fig. 26(e) and (f)). Again, the smallest errors are obtained
when r = 8, in both cases.

In a second experiment, the Wfull matrix plotted in
Fig. 10(b) is studied. First, this matrix is multiplied with

http://users.isr.ist.utl.pt/~aguiar/spoc.m


J Math Imaging Vis (2011) 39: 140–160 157

Fig. 27 Matrix of trajectories obtained by randomly permuting the
rows of W (matrix of the trajectories plotted in Fig. 10(b)). W con-
tains 30% of missing data generated with the mask of Fig. 25. (a) The
rmsall as a function of the rank values, no noisy data case. (b) Dif-

ference between F and each one of the Fk (see (5)), no noisy data
case. (c) The rmsall as a function of the rank values, noise is added to
Wfull. (d) Difference between F and each one of the Fk , noisy data case

the mask, given a matrix of 30% of missing data. The rows
of this matrix are randomly permuted before applying the
SPOC algorithm, in order to simulate a non-smooth mo-
tion of the camera. As in the case of the Alternation (see
Sect. 3.2.1), the estimated rank is not correct neither consid-
ering rmsall nor the proposed measure of goodness. Further-
more, the plots are not similar when there is no noise in the
data.

Finally, results obtained by applying SPOC to the matrix
of trajectories W are shown in Fig. 28. The smallest error
is obtained when r = 6 in the case of no noise in the data
and for both measures of goodness (see Fig. 28(a) and (b)).
When working with noisy data, the smallest error is obtained
for r = 7, for both the rmsall and the difference between F

and Fk , as can be seen in Fig. 28(c) and (d).
The main drawback of the SPOC algorithm is that it gives

a global optimal solution only for a particular structure of
missing data. Although, in some cases, this missing data dis-
tribution could be enforced, it is not always possible. Addi-
tionally, it seems that the SPOC algorithm does not give as

good results when the rows of W are randomly permuted
and when there is noise in the data. A more extensive study
should be done before using this method in the proposed
rank estimation technique.

3.3.3 Summary

It is important to remark that the main goal of the paper is
to estimate the rank of the matrix, without using the number
of objects in the scene nor the kind of their motion. Inde-
pendently of the matrix completion used to fill in the miss-
ing entries in the matrix, it is needed to define a measure of
goodness in order to study the recovered missing data and
select the rank that gives the best filled in matrix.

Although the proposed rank estimation technique uses
the Alternation technique as a matrix completion method,
the previous two Sections show it is also valid with other
methods. The SVD is not suitable for our proposed rank es-
timation technique, since it cannot deal with missing data.
However, it has been shown that the proposed measure of
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Fig. 28 Matrix of trajectories W , which contains 30% of missing data.
(a) The rmsall as a function of the rank values, no noisy data case.
(b) Difference between F and each one of the Fk (see (5)), no noisy

data case. (c) The rmsall as a function of the rank values, noise is added
to Wfull. (d) Difference between F and each one of the Fk , noisy data
case

goodness is also valid with the SVD, while there is no noise
in the data. Otherwise, the obtained error decreases as the
rank value increases, for both tested measures of goodness.

It has been also shown that it would be interesting to use
a globally optimal method, such as the SPOC [3], in order to
obtain a global solution when completing the matrix. How-
ever, the main drawback of using this method is that it is not
always easy to work with matrices whose missing entries
produce a Young diagram. Furthermore, the computational
cost of this method is very high when the matrix is large.

4 Conclusions

A novel technique to estimate the rank of a given missing
data matrix is proposed. It is based on the study of the fre-
quency spectra of the input matrix W . The motivation is
that, since feature points belong to surfaces of rigid objects,
the frequencies of the signal generated by the movement of
these points, summarized at each column of W , should be
preserved after filling in missed entries. In other words, the

recovered full matrix studied as columns should contain a
frequency spectra similar to the one of the input matrix.

The obtained results empirically show the good perfor-
mance of the proposed rank estimation technique when
scenes containing different numbers of objects and percent-
ages of missing data are considered. From the synthetic
scene experiments (no noisy data) it can be concluded that
the rank of the input matrix is well estimated, even with per-
centages of missing data of about 40%. Real scene experi-
ments show that the proposed technique is also able to deal
with real noisy images. The rms obtained with Alternation,
which is used as matrix completion method, is also analyzed
in order to study the error added to the data during the filling
in process. It has been shown that the rms value grows as the
percentage of missing data is increased. Hence, in cases with
a high percentage of missing data, filled in matrices contain
a high amount of noise and the estimated rank value could
be less accurate.

In addition to the Alternation technique, global matrix
completion methods have also been studied. Concretely, re-
sults obtained with the Singular Value Decomposition and
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with the SPectrally Optimal Completion show that the pro-
posed rank estimation technique is also valid with other ma-
trix completion techniques. However, the SVD will not be
used, since it cannot deal with missing data.

It should be highlighted that the proposed rank estima-
tion technique does not require the prior knowledge of the
objects contained in the scene, nor any assumption about
their motion. Although the viability of the proposed rank es-
timation technique has not been theoretically demonstrated,
its good performance has been empirically shown for both
synthetic and real data sequences.
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