
J Math Imaging Vis (2009) 34: 240–258
DOI 10.1007/s10851-009-0144-3

An Iterative Multiresolution Scheme for SFM with Missing Data

Carme Julià · Angel D. Sappa · Felipe Lumbreras ·
Joan Serrat · Antonio López

Published online: 21 February 2009
© Springer Science+Business Media, LLC 2009

Abstract Several techniques have been proposed for tack-
ling the Structure from Motion problem through factoriza-
tion in the case of missing data. However, when the percent-
age of unknown data is high, most of them may not perform
as well as expected. Focussing on this problem, an iterative
multiresolution scheme, which aims at recovering missing
entries in the originally given input matrix, is proposed. In-
formation recovered following a coarse-to-fine strategy is
used for filling in the missing entries. The objective is to re-
cover, as much as possible, missing data in the given matrix.
Thus, when a factorization technique is applied to the par-
tially or totally filled in matrix, instead of to the originally
given input one, better results will be obtained. An evalua-
tion study about the robustness to missing and noisy data is
reported. Experimental results obtained with synthetic and
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real video sequences are presented to show the viability of
the proposed approach.

Keywords Factorization technique · Structure from motion

1 Introduction

The Structure From Motion (SFM) problem consists in ex-
tracting the 3D shape of a scene as well as the relative
camera-object motion from trajectories of tracked features.
In the computer vision context, factorization is a theoreti-
cally sound method addressing this problem. Since it was
introduced by Tomasi and Kanade [26] many variants have
been presented in the literature (e.g. [24] for the case of para-
perspective camera model; a sequential factorization method
in [21]; [4] and [9] for the multiple object case, etc.). A brief
review of factorization technique is provided below.

Let pj , with j = 1, . . . , p, be the 3D coordinates of fea-
ture points of a given object. At each frame i = 1, . . . , f ,
these feature points can be projected into the image plane
by using an orthographic camera model:

uij = itipj + txi ,

vij = jtipj + tyi ,
(1)

where ii , ji correspond to the x and y camera axes at frame i

and (txi , tyi) its translation. Extensions considering line pro-
jections [25] and plane projections [22] have been also pro-
posed in the literature. These 2D coordinates are stacked into
the matrix of trajectories W , where every row represents a
frame of the sequence and every column represents a given
feature. By using (1), the following decomposition can be
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obtained:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u11 . . . u1p
...

...

uf 1 . . . ufp

v11 . . . v1p
...

...

vf 1 . . . vfp

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

it1 tx1
...

...

itf txf

jt1 ty1
...

...

jtf tyf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
p1 . . . pp

1 . . . 1

]

= M2f ×4S4×p, (2)

where f and p are the numbers of frames and feature points,
respectively.

Factorization techniques aim at expressing the matrix
of trajectories W as the product of two unknown matrices,
namely, the relative camera-object motion at each frame (M)
and the 3D shape (S) of the object:

W2f ×p = M2f ×rSr×p, (3)

where f , p are the numbers of frames and feature points
respectively and r the rank of W . Given an input matrix
W , the goal is to find the factors M and S that mini-
mize ‖W − MS‖2

F , where ‖ · ‖F is the Frobenius matrix
norm [6]. The Singular Value Decomposition (SVD) gives
the closed-form solution to this problem, when there are
not missing entries, by using the fact that W is rank de-
ficient. Hence, given the Singular Value Decomposition of
W : W = U2f ×r�r×rV

t
r×p , motion and shape matrices can

be obtained by:

M = U2f ×r�
1
2 , S = �

1
2 V t

r×p. (4)

However, this decomposition is not unique, since any r × r

invertible matrix A also provides a valid decomposition:
W = MAA−1S. Then:

M̂ = MA, Ŝ = A−1S (5)

being M and S the true motion and shape matrices. The
matrix A can be computed by imposing orthonormality be-
tween the two camera axes at each frame. That is, by solving
the following 3f non-linear equations on the terms of A:

itiAA−1ii = 1,

itiAA−1ji = 0, (6)

jtiAA−1ji = 1, i = 1, . . . , f.

This final step is referred to as normalization. According
to [26], this is a simple data fitting problem which, though
non-linear, can be solved efficiently and reliably.

Unfortunately, trajectories are often incomplete or split
due to objects occlusions, missing on the tracking or simply
because they exit the camera field of view. Since the SVD
cannot be used with missing data, other methods have been
proposed in the literature to tackle these cases.

1.1 Related Work

In their seminal paper, Tomasi and Kanade [26] propose
an initialization method in which they first decompose the
largest full sub-matrix by the factorization method and then
the initial solution grows by one row or by one column at a
time, filling in the missing data. The main drawback of this
technique is that finding the largest full sub-matrix is a NP-
hard problem. Jacobs [15] treats each column with missing
entries as an affine subspace and shows that for every r-tuple
of columns the space spanned by all possible completions of
them must contain the column space of the completely filled
matrix. Unknown entries are recovered by finding the least
squares regression onto that subspace. One drawback of this
approach is that the solution is strongly affected by noise
on the data. It is used as initialization by other approaches.
An iterative algorithm for recovering missing components
in a large noisy low-rank matrix is provided by Chen and
Suter [3]. The algorithm begins with a complete sub-matrix
which grows at each iteration by one row or column, filling
in the missing entries at the same time. They present a cri-
terion based on the SVD’s denoising capacity versus miss-
ing data in order to decide which parts of the matrix should
be used in the iterative process. The goal is to recover the
most reliable incomplete sub-matrix by using the iterative
algorithm. Then, other columns and rows are projected on it
using an imputation method. In [16], Jia et al. present an al-
gorithm that aims the SFM recovery with noisy and missing
data. It is similar to the aforementioned one [15], but instead
of selecting several r-tuple of columns, it uses the most re-
liable sub-matrix to recover the 3D structure. The authors
define a criterion that provides a measure of the sensitivity
of a sub-matrix to perturbation due to noise: the deviation
parameter. Using this criterion, the sub-matrices with small-
est deviation parameter are considered to construct the final
matrix.

Wiberg [28] presents an algorithm which uses the Gauss-
Newton method to compute the principal components of a
matrix of data with missing observations. The key point is
to separate the variables in two sets and compute them al-
ternatively. In a recent paper, Okatani et al. [23] present in
detail Wiberg algorithm focusing on the matrix factorization
problem and demonstrating its good performance compared
to the Levengerg-Marquardt (LM) technique.

Wiberg’s algorithm is generally referenced in the litera-
ture (e.g., [2, 7]), as the origin of what is called the Alterna-
tion technique. This iterative technique starts with an initial
random factor S0 or M0 and, at each iteration k, computes
alternatively each of the factors Mk and Sk , until the prod-
uct MkSk converges to W . The key point of this 2-step algo-
rithm is that, since the updates of S given M (analogously
in the case of M given S) can be independently done for
each row of M (or column of S), missing entries in W cor-
respond to omitted equations. Due to that fact, with a large
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amount of missing data the method would fail to converge.
Several variants of this approach have been proposed in the
literature. In [7], Guerreiro and Aguiar introduce the Row-
Column algorithm, which is very similar to the Alternation
technique. They study its performance and compare it with
the Expectation-Maximization (EM) algorithm. They con-
clude that it performs better than the EM and, besides, it
is more robust to the initialization. Hartley and Schaffal-
itzky [11] suggest to add a normalization step at each it-
eration. This particular Alternation technique is denoted as
PowerFactorization. Furthermore, the authors propose an-
other variant to Alternation, focussing on the SFM prob-
lem. In this case, M and S factors correspond to the mo-
tion and shape matrices, respectively. Hence, since S con-
tains the 3D feature points in homogeneous coordinates, it
can be imposed that the last row of S is equal to 1 (where 1
represents a vector of 1). In [1], Aanaes and Fisker present
an Alternation-based scheme that can deal with mismatched
features, missing features and noise on the features. Huynh
et al. [13] present an outlier correction scheme, based on the
Alternation technique, that iteratively updates the elements
of the matrix of trajectories. Thus, the method corrects the
outliers and factorizes the matrix of trajectories simultane-
ously. In [2], Buchanan and Fitzgibbon summarize factor-
ization approaches with missing data and propose the Alter-
nation/Damped Newton Hybrid, which combines the Alter-
nation strategy with the Damped Newton method. The latter
is fast in valleys, but not effective when far from the min-
ima. The goal of introducing this hybrid scheme is to give
a method that has fast initial convergence and, at the same
time, has the power of non-linear optimization.

Additionally, several techniques that are not purely fac-
torization have been proposed to tackle the SFM problem
with missing data. Martinec and Pajdla [20] propose a tech-
nique for 3D reconstruction by fitting low-rank matrices
with missing data. It consists in taking rank-four matrices
of minimal size and in combining spans of their columns in
order to constraint a basis of the whole fitted matrix. The so-
lution is valid for the affine and the perspective camera mod-
els. This method does not try to fill in the missing data in the
matrix of trajectories. In fact, only known data are used. The
formulation is similar to the one presented in [15]. The main
difference is that the problem is formulated in terms of the
original subspaces, while in [15] the complementary ones
are used. Finally, Guilbert et al. [8] present a batch method
for recovering Euclidian structure and motion from sparse
image data. Using closure constraints [27], the camera co-
efficients are formulated linearly in the entries of the affine
fundamental matrices.

1.2 Objective

The main drawback of factorization techniques is found
working with a large percentage of missing data; the ob-

tained solutions get worse as the percentage of missing data
increases. Addressing to this problem, an iterative multires-
olution scheme, which fill in missing data in the matrix of
trajectories was introduced in [17]. Improvements to this ap-
proach were presented in [18]. The key point of the imple-
mented approach is to work with sub-matrices, instead of
with the whole matrix of trajectories. That is, reduced sets
of feature points along a few number of consecutive frames
are selected. Then, for each set (sub-matrix), the 3D recon-
struction and the camera motion corresponding to the used
feature points are obtained by applying a factorization tech-
nique. The missing entries in each selected set can be filled
in just by multiplying the recovered shape and motion ma-
trices. One of the main contributions of this paper over the
two preliminary approaches ([17] and [18]) is that only sub-
matrices with a percentage of missing data below 50% are
used, in order to assure good recovered factors. Furthermore,
a more extensive evaluation study is reported. On the one
hand, and only in the synthetic case, the recovered factors
M and S are studied and compared to the ground truth ones,
by using a robust RANSAC [5] based strategy. On the other
hand, the goodness of the recovered entries is studied by tak-
ing into account both the initially known entries and also the
initially missing ones. The latter is only possible when the
matrix of trajectories is initially known.

The proposed approach should be seen as a pre-processing
technique; that is, firstly the originally given input matrix
of trajectories is partially or totally filled in with the pro-
posed iterative multiresolution scheme. Then, any factoriza-
tion technique could be applied in order to obtain the struc-
ture and motion of the whole matrix. The final goal is to
improve results when the factorization is applied to the ma-
trix previously filled in with the proposed scheme, instead
of applying it directly to the originally given input matrix,
which contains a higher percentage of missing data.

Another constraint of most of the current factorization
techniques is that the matrix of trajectories is assumed to be
outlier-free, as pointed out in [14] and [13]. This is not al-
ways a realistic assumption, since outliers can appear in real
sequences due to failures in the tracker. In [14] and [13],
they propose approaches to detect and correct outliers, re-
spectively. As mentioned above, the current paper is focused
on dealing with high percentages of missing data in the ma-
trix of trajectories; the problem of detection and correction
of outliers is out of scope of this work.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the iterative multiresolution scheme. Sec-
tion 3 provides an evaluation study of the performance of the
proposed scheme, both for synthetic and real data. Three dif-
ferent factorization techniques are considered in the study:
the Alternation with motion constraints, the Powerfactoriza-
tion and the Alternation/Damped Newton Hybrid. Conclu-
sions and future work are given in Sect. 4.
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Fig. 1 wi
k and its four

corresponding win
k matrices,

computed during the first stage,
at iteration k = 6

2 Proposed Approach: Iterative Multiresolution
Scheme

Essentially, the basic idea of the proposed approach is to
work with sub-matrices that contain a reduced percentage
of missing data. Then, a factorization technique is used to
obtain the 3D shape S and motion M of each of these sub-
matrices and the missing data are filled in with the resulting
product MS. The proposed approach consists of two stages,
which are described below.

2.1 Observation Matrix Splitting

Let W2f ×p be the matrix of trajectories (also referred to
through the paper as originally given input matrix) of p fea-
ture points tracked over f frames containing missing en-
tries; it will be denoted as W . Let k be the index indicating
the current iteration number.

The aim at this first stage is to split the matrix of tra-
jectories W in order to obtain sub-matrices with a reduced
percentage of missing data. This splitting process consists
of the following two steps:

– Splitting: in the first step, the given input matrix W is
split into a set of k × k non-overlapped sub-matrices,1

as can be seen in Fig. 1 in the case of k = 6. Each
obtained sub-matrix is defined as wi

k , being i = 1, . . . , k2,

and has a size of � 2f
k

� × �p
k
� (e.g., see the sub-matrix wi

k

in Fig. 1). For the sake of presentation simplicity, here-
inafter the split matrix at the current iteration level k will
be referred to as Wk .

– Multiresolution approach: although the idea is to focus
the process in a small area (sub-matrix wi

k), which is sup-
posed to have a reduced percentage of missing data, re-
covering information from a small patch can be affected
from noisy data. Furthermore, if some of the k × k sub-
matrices are discarded due to a high percentage of missing
data, a poor partition of W could be obtained.

1Notice that the algorithm begins with k = 2; otherwise no partition is
obtained.

Hence, in order to both improve the confidence of re-
covered data and also obtain a richer partition of W , in
this second step a multiresolution approach is followed
(only when k > 2). This multiresolution consists in com-
puting four overlapped sub-matrices win

k , n = 1, . . . ,4,
with twice the size of wi

k (see Fig. 1) for every wi
k .

The idea of this enlargement process is to study the
recovered entries in wi

k when different size regions are
considered. Hence, entries are not recovered from a sin-
gle small sub-matrix and an overlapping among filled in
entries is provided. Other strategies were tested in order
to compute in a fast and robust way sub-matrices with
a lower percentage of missing entries (e.g., quadtrees,
ternary graph structure), but they do not give the desired
and necessary properties of overlapping. Note that most
of current sub-matrix factorization based approaches fol-
low fine-to-coarse strategies relying on an initial full sub-
matrix; then results are used in a kind of region growing
scheme.

Since generating four win
k , for every wi

k , is a compu-
tationally expensive task, a simple and more direct ap-
proach is followed. It consists in splitting the matrix Wk

into four different ways, by shifting win
k half of its size

through rows, columns or both at the same time. Figure 2
illustrates the five partitions of matrix Wk generated at
the sixth iteration—i.e., the one generated by all the wi

k

and the remainder four ones, obtained with all the win
k

sub-matrices. When all these matrices are considered to-
gether, the overlap between different areas is obtained, see
textured cell in Fig. 1 and Fig. 2.

Missing data at corners cells are only considered to
be filled twice (wi

k and one win
k ), while border cells three

times (wi
k and two win

k ). Other missing data in other cells

are considered five times (wi
k and its four win

k ).

2.2 Sub-matrices Processing

At this stage, the objective is to recover missing data by ap-
plying an imputation technique at every single sub-matrix.
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Fig. 2 Five partitions of matrix
Wk . Note the overlap between a
wi

k sub-matrix with its

corresponding four win
k

sub-matrices, computed during
the first stage

At the same time, initially known values could also be mod-
ified. One important point that must be highlighted is that
sub-matrices with a high percentage of missing data are dis-
carded (as mentioned above, in the current implementation
only sub-matrices with less than 50% of missing data are
considered).

Independently of their size hereinafter sub-matrices will
be referred to as Ws . Therefore, given a sub-matrix Ws its
corresponding Ms and Ss matrices are obtained by using a
factorization technique. Then, the product MsSs is used to
fill in the corresponding matrix Ws . Finally, the root mean
squared (rms) is computed as follows:

rmss = ‖Ws − MsSs‖F√
n

=
√∑

i,j |(Ws)ij − (MsSs)ij |2
n

, (7)

where i and j correspond to the index pairs of the known
entries in (Ws)ij and n is the number of those pairs in Ws .

Since the rmss is generally adopted as a measure of
the goodness of the recovered data, it will be used later on
as a weighting factor for merging data on overlapped ar-
eas after finishing the current iteration. Concretely, every
point of the filled in Ws is associated with a weight, defined
as 1/rmss .

In our original approach [17] and [18], a threshold ς

was defined and used to discard the recovered entries in Ws

when its corresponding rmss was higher than ς . However,
the main drawback was to find the best value for that thresh-
old. One of the main improvements of the current paper over
the original approach is that, since only matrices with a re-
duced percentage of missing data are used, no ς -threshold
is needed to be defined.

Finally, when every sub-matrix Ws has been processed,
recovered missing data are used for filling in the originally
given input matrix W . There are two kind of entries in this
merging step: the initially missing ones and the initially
known ones. The first ones, can be recovered from more
than a single sub-matrix. In this case, each missing entry is
filled in with the normalized weighted average of the corre-
sponding recovered values. Concretely, the aforementioned
1/rmss is used as a weight to measure the goodness of the re-
covered entry. If a missing entry is recovered from only one
sub-matrix, the filled in entry takes directly the correspond-
ing value. The second kind of entries, the initially known

ones, could be modified in the merging step; the mean be-
tween the original entry and the weighted average of the cor-
responding recovered values from each sub-matrix gives the
final value of the entry.

Once recovered missing data have been used for fill-
ing in the input matrix W , the iterative process starts again
(Sect. 2.1) splitting the new matrix W either by increasing
k by one or, in case the size of sub-matrices wi

k at the new
iteration stage is too small, by setting k = 2. This iterative
process is applied until one of the following conditions is
true: a) a maximum number of iterations is reached; b) at the
current iteration no missing entries were recovered; c) the
matrix of trajectories is totally filled. Figure 3 presents a
chart flow illustrating the stages of the algorithm; an outline
of it is given below:

Outline of the algorithm

Inputs: W trajectory input matrix; data: percentage of
known data in W ; itmax: maximum number of iterations;
minsize: sub-matrix minimum size.
Set k = 2, it = 1, W0 = W and repeat the following steps
while: (it < itmax) and (datak > datak−1) and (datak <

100%)

1. Split the matrix W0 into k×k sub-matrices wi
k , obtaining

Wk .
If size(wi

k) < minsize, set k = 2, it = it +1 and repeat
step 1.

2. Multiresolution approach: compute the four partitions of
matrix Wk (generated by win

k , n = 1, . . . ,4).
3. Sub-matrices processing: apply a factorization technique

to all the sub-matrices.
4. Merge the data by using the weights and update Wk . Set

W0 = Wk , k = k + 1, it = it + 1. Go to step 1.

Solution: Wfilled = Wk , datak > data0

3 Evaluation Study

The aim at this stage is to study the robustness to missing
and noisy data of a factorization technique applied to the
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Fig. 3 Algorithm. Example of an originally given input matrix W with only 31% of known data. The obtained filled matrix Wfilled after 6 iterations
contains 50.6% of known data

Fig. 4 Evaluation study: the
recovered factors and the
obtained rms in each case are
compared. IT stands for iterative
scheme. In this example, the
originally given input matrix
only contains 31% of known
data

partially or totally filled in matrix obtained with the pro-
posed iterative scheme. This study is performed by com-
paring the result when the same factorization technique is
applied directly to the originally given input matrix. In sum-
mary, the methodology proposed to evaluate the obtained
results, which is shown in Fig. 4, consists in applying:

• a factorization technique over the originally given input
matrix W ;

• a factorization technique over the matrix filled in with the
proposed iterative multiresolution scheme Wfilled . Hence,

the considered factorization technique is used in the it-
erative multiresolution scheme to fill in missing data and
also at the final step, to factorize the whole matrix into the
motion and shape matrices.

Experiments using both synthetic and real data are pre-
sented below. The following factorization techniques are
used in the evaluation study: a) Alternation with motion con-
straints, which is presented in Sect. 3.2; b) Powerfactoriza-
tion [11]; and c) Alternation/Damped Newton Hybrid [2].
Actually, experimental results are focused on the first tech-
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nique (see Sect. 3.2.1 and Sect. 3.2.2). The other two meth-
ods are included in order to show that the proposed scheme
is also valid with other factorization techniques. Results ob-
tained in these cases are depicted in Sect. 3.3. Matrices of
trajectories used during the experiments are assumed to be
outlier-free, since none of the techniques used to evaluate the
proposed scheme are robust to outliers (as mentioned in [14]
and [2]).

3.1 Error Computation

Different amounts of missing data are considered—from
10% up to 70%. Furthermore, different levels of Gaussian
noise—standard deviation σ with a value from 1

3 to 1 and
zero mean—are added to the 2D feature point trajectories,
for the synthetic case. The obtained matrices are denoted
as Ŵ . Notice that in the case of real data the originally given
input matrix W already contains noisy values. For each set-
ting (amount of missing data and level of noise) 100 at-
tempts are repeated and the root mean square error (rms)
is computed:

rms = ‖Ŵ − MS‖F√
n

=
√∑

i,j |(Ŵ )ij − (MS)ij |2
n

, (8)

where i and j correspond to the index pairs where (Ŵ )ij is
defined and n is the number of those pairs in Ŵ .

Given a matrix where all values are known Wall, different
percentages of missing data are generated by automatically
removing parts of random columns in order to simulate the
behaviour of tracked features. This strategy is used in both
synthetic and real data experiments. The removing process
randomly selects a cell in the given column, splitting it up
into two parts. One of these parts is randomly removed, sim-
ulating features missed by the tracker or new features de-
tected after the first frame, respectively. Different numbers
of frames could be used to achieve the percentages of miss-
ing data, but the idea is to work with matrices of the same
size, since the performance of factorization techniques de-
pends on the size of the matrix. Note that missing data could
simply be obtained by randomly removing entries in Wall,
but it would not simulate a realistic situation. Besides, the
performance of factorization techniques are far better deal-
ing with random missing data and it may not be appropriated
for an evaluation study.

As pointed out in [3], the rms defined by the expres-
sion (8) could be ambiguous and in some cases contradic-
tory. That is because it only takes into account the recovered
values corresponding to initially known entries in the origi-
nally given input W , but it ignores how missing entries are
recovered. Since all entries are initially known in Wall, the
proposed evaluation study is performed by computing the
root mean square error considering all the entries in Wall.

Hereinafter, this measure will be referred to as rmsall and it
is defined as follows:

rmsall = ‖Wall − MS‖F√
2fp

, (9)

where 2fp is the number of elements in the matrix Wall.
Furthermore, and only in the synthetic case, the recov-

ered M and S are compared to the ground truth matrices
(MG and SG) with the following strategy. First of all, in or-
der to compute the error between the recovered shape ma-
trix S and the ground truth SG, they have to be represented
in the same reference system. In other words, a 4 × 4 trans-
formation matrix H , such that SG = HS, should be com-
puted. Since the correspondence between columns in S and
SG is known, matrix H could be directly computed by us-
ing any quartet of four columns. However, elements in S

(i.e., columns) may correspond to wrongly recovered data.
Therefore, a robust RANSAC [5] based strategy is proposed
to compute the transformation matrix H as indicated below.

Random sampling. Repeat the following three steps N

times (in our experiments N was set to 10).

1. Select a random sample μ of 4 different columns of S.
2. For this subsample μ, compute Hμ using the pseudoin-

verse [12] of Sμ, which gives the shortest length least
squares solution to the problem SG = HμSμ. Therefore,
Hμ = SGSt

μ(SμSt
μ)−1.

3. For this solution Hμ, compute both HμS and the number
of inliers among the entire set of columns of S. An inlier
is defined by a column j , where ‖SGj − HμSj‖F < σ ,

where σ = ‖SG‖F√
4p

, being p the number of columns of SG.

Solution:

1. Choose the solution that has the largest number of inliers.
Let Hi be this solution.

2. Refine Hi by using its corresponding inliers, instead of
only 4 points. Let H be this final refined transformation.

The transformation matrix H computed above with the
robust technique is now used to compute the error of the
estimated shape, using all the points of S4×p:

rmsS = ‖SG − HS‖F√
4p

. (10)

The inverse of this transformation matrix is used to mea-
sure the error of the estimated motion M2f ×4:

rmsM = ‖MG − MH−1‖F√
2f 4

. (11)
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3.2 Iterative Multiresolution Scheme by Using Alternation
with Motion Constraints

Due to its simplicity and its good performance, Alternation
technique was used in [18], where it was compared to the
Damped Newton technique [2]. It was shown that the first is
more appropriated, both from the results and from the com-
putational cost.

Focusing on the SFM problem, the Alternation with mo-
tion constraints is introduced in this section. It is a variant
of the Alternation similar to the one mentioned above for
the special case of SFM [11]. In that approach, they im-
pose that the last row of S should be equal to 1. In addition
to that, the fact that M contains the relative camera-object
motion at each frame is used. Therefore, given Mk , and be-
fore computing Sk , the orthonormality of the camera axes
at each frame (namely the rows of M , taking only the first
three columns) is imposed. The proposed algorithm is sum-
marized below:

Alternation with motion constraints algorithm: The algo-
rithm starts with an initial random 4 × p matrix S0, setting
its last row to 1. The next steps are repeated until the product
MkSk converges to W2f ×p:

1. Compute the matrix Mk :

Mk = WSt
k−1(Sk−1S

t
k−1)

−1. (12)

Define M = [R t ], where R is a 2f × 3 matrix that con-
tains the relative camera-object orientation at each frame,
whereas t is a 2f × 1 vector that contains the relative
camera-object position at each frame; in other words, R

and t are the rotation and translation components of the
camera, respectively.

2. Impose orthonormality of camera axes, as in the normal-
ization step in [26]:

itiAA−1ii = 1,

jtiAA−1ji = 1, (13)

itiAA−1ji = 0,

where ii and ji are the x and y camera axes at frame i (see
(2)), and i = 1, . . . , f , being f the number of frames.

Actualize Mk :

M̃k = MkA. (14)

3. Subtract to each column j of W (denoted as wj ) the
translation component of M̃k :

w̃j = wj − t̃k, j = 1, . . . , p. (15)

Compute the matrix Sk = [ (SR)k 1 ]:
(SR)k = ((R)tk(R)k)

−1((R)tkW̃ ). (16)

4. Stop if the product MkSk converges to W .
Otherwise, set k = k + 1 and go to step 1.

Solution: The product MkSk is the closest rank-r matrix to
W , in the least-squares sense.

Due to the motion constraints added at each iteration, this
Alternation variant provides an Euclidean 3D reconstruction
of the object, instead of an affine one.

One of the main advantages of this two-step algorithm
is that the updates of M given S (analogously S given M)
can be done by solving a least squares problem for each row
of M independently. Therefore, missing entries in W cor-
respond to omitted equations and due to that fact obtained
result depends on the number of initially known data in each
row and column of W .

Results obtained, when the Alternation with motion con-
straints is considered in the proposed scheme, are presented
in the next two sections, for synthetic and real data experi-
ments, respectively.

3.2.1 Synthetic Data

This section provides results obtained with two data sets
from different objects. The first data set is generated by ran-
domly distributing 3D points over the surface of a cylin-
der, see Fig. 5 (left). The second data set is generated
from 3D points of a triangular mesh (nodes), representing a
Beethoven sculptured surface, see Fig. 11 (left). Two differ-
ent sequences are obtained with these objects by performing
a rotation and a translation over each one of them. At the
same time, the camera also rotates and translates. Although
missing data can be obtained due to self occlusions of the
objects, all the points are considered, as mentioned above.

The first sequence is defined by 200 frames contain-
ing 300 feature points. The trajectories are plotted in
Fig. 5 (right). Figure 6 shows an example of recovered
shape (left) and motion ((middle) and (right)) obtained by
applying the Alternation technique to the matrix filled with
the proposed iterative scheme. The originally given input
matrix contains about 20% of missing data, which have been
removed from the initially known trajectory matrix Wall.

The obtained rms considering different percentages of
missing data is shown in Fig. 7. Concretely, the mean of the
computed rms is plotted, in logarithmic scale. The reported
experiments correspond to the no noise case (left) and to
cases with added Gaussian noise of a standard deviation (σ )
of 1/3 (middle) and 1 (right), respectively.

It can be seen that in general the Alternation applied to
the matrix previously filled in with the proposed iterative
scheme (denoted as It-Alt in the plots) performs better than
applied directly to the originally given input W (denoted as
Alt). When the percentage of missing data is below or equal
to 20% (Fig. 7 (left) and (middle)) or 30% (Fig. 7 (right)),
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Fig. 5 Synthetic object: (left) cylinder; (right) feature point trajectories represented in the image plane

Fig. 6 Cylinder scene: (left) 3D reconstruction (thicker points correspond to reappearing features); (middle) recovered camera motion; (right) en-
largement of the recovered camera motion

Fig. 7 Cylinder scene; mean of rms in logarithmic scale, for different percentages of missing data: (left) no noise; (middle) σ = 1/3; (right) σ = 1

Fig. 8 Cylinder scene; mean of the rmsall in logarithmic scale, for different percentages of missing data: (left) no noise; (middle) σ = 1/3;
(right) σ = 1
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Fig. 9 Cylinder scene; mean of the error of the recovered motion (rmsM ) in logarithmic scale, for different percentages of missing data: (left) no
noise; (middle) σ = 1/3; (right) σ = 1

Fig. 10 Cylinder scene; mean of the error of the recovered shape (rmsS ) in logarithmic scale, for different percentages of missing data: (left) no
noise; (middle) σ = 1/3; (right) σ = 1

no improvements are obtained by using the iterative scheme
since the Alternation performs quite well with such reduced
amount of missing data.

On the contrary, with more than 20% (no noise and
σ = 1/3 cases) and 30% (σ = 1) of missing data, the rms
obtained when the Alternation is applied directly to the orig-
inally given input matrix becomes higher than when it is ap-
plied to the matrix filled in with the proposed iterative mul-
tiresolution scheme. In Fig. 7 (middle) and (right), it can be
seen that the difference between the two approaches is not
as marked as in the free noise case (Fig. 7 (left)).

As mentioned above, the rmsall, which considers all the
entries in the originally given input matrix, instead of only
the initially known ones, is also studied. Figure 8 shows the
obtained values. It can be seen that compared to rms, the
rmsall is in general higher, which means that the initially
known entries are better recovered than the missing ones
in most cases. Notice that the difference between rms and
rmsall is higher when the Alternation is applied directly to
the originally given input matrix than when it is applied to
the matrix filled in with the iterative scheme.

The recovered factors S and M are also studied. The er-
rors are measured by computing the rmsS (see (10)) and
rmsM (see (11)), which are plotted in Fig. 9 and Fig. 10,
respectively. It can be seen that the results are similar to
the ones obtained with the rms: better results are obtained
when Alternation is applied to the matrix previously filled in

with the proposed iterative scheme, except in cases in which
the percentage of missing data is below or equal to 20%
(no noise and σ = 1/3 cases) or 30% (σ = 1 case).

In the second sequence, the numbers of frames and tra-
jectories are 200 and 266, respectively. Feature point full
trajectories are plotted in Fig. 11 (right). Figure 11 (left)
contains a large amount of 3D points (about 2655) in or-
der to visualize better the object. Figure 12 shows an exam-
ple of the recovered shape (left) and motion ((middle) and
(right)) obtained by applying Alternation to the matrix pre-
viously filled in with the proposed iterative scheme (again,
originally given input matrix contains 20% of missing data).

The obtained rms in this second sequence is plotted in
Fig. 13. In the case of no noise, Fig. 13 (left), it can be seen
that for percentages of missing data between 10% and 70%,
the Alternation gives smaller rms applied to the matrix filled
in with the proposed iterative scheme, than to the originally
given input one.

When noisy data are considered (Fig. 13 (middle) and
(right)), the advantages of previously using the proposed
scheme can be appreciated, while the amount of missing
data is higher than 30% for σ = 1/3 (Fig. 13 (middle))
and for percentages between 30% and 70% for σ = 1
(Fig. 13 (right)).

Figure 14 shows the obtained rmsall. As in the previous
sequence, it can be seen that the rmsall is in general higher
than rms and, again, the difference between rms and rmsall
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Fig. 11 Synthetic object: (left) Beethoven’s sculpture; (right) feature point trajectories represented in the image plane

Fig. 12 Beethoven’s sculpture scene: (left) 3D reconstruction; (middle) recovered camera motion; (right) enlargement of the recovered camera
motion

Fig. 13 Beethoven scene; mean of the rms in logarithmic scale, for different percentages of missing data: (left) no noise; (middle) σ = 1/3;
(right) σ = 1

is higher when the Alternation is applied directly to the orig-
inally given input matrix. In particular, the rmsall is smaller
when the Alternation is applied to the matrix filled in with
the proposed iterative scheme, while the percentage of miss-
ing data is higher than 10% (Fig. 14 (left) and (middle)) and
30% (Fig. 14 (right)).

The rmsM is shown in Fig. 15. The results are very simi-
lar to the ones obtained in the rms study; the rmsM is smaller

when the Alternation is applied to the matrix previously
filled in with the proposed iterative scheme, while the per-
centage of missing data is higher than 10% (Fig. 15 (left)
and (middle)) and 20% (Fig. 15 (right)).

In Fig. 16, it can be seen that the obtained rmsS is smaller
when the Alternation is applied to the matrix previously
filled in with the proposed iterative scheme, while the per-
centage of missing data is higher than 10% for the no noisy
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Fig. 14 Beethoven scene; mean of the rmsall in logarithmic scale, for different percentages of missing data: (left) no noise; (middle) σ = 1/3;
(right) σ = 1

Fig. 15 Beethoven scene; mean of the error for the recovered motion (rmsM ) in logarithmic scale, for different percentages of missing data:
(left) no noise; (middle) σ = 1/3; (right) σ = 1

Fig. 16 Beethoven scene: mean of the error of the recovered shape (rmsS ) in logarithmic scale, for different percentages of missing data: (left) no
noise; (middle) σ = 1/3; (right) σ = 1

data case (Fig. 16 (left)), 30% for σ = 1/3 (Fig. 16 (middle))
and σ = 1 (Fig. 16 (right)).

As a conclusion, it can be seen that in general, the Al-
ternation applied to the originally given input matrix per-
forms quite well, while the percentage of missing data is
small. Therefore, it is not worth to firstly apply the iterative
multiresolution scheme in those cases. However, the results
get worse as the percentage of missing data grows. Actually,
the number of cases in which the Alternation applied to the
originally given input matrix converges to a local minimum
increases as the percentage of missing data grows. See, for
instance, how the mean of the rms varies between 20% and

30% of missing data in Fig. 7 (left). Hence, when the per-
centage of missing data is high, it is better to apply the pro-
posed multiresolution scheme as a previous step, in order to
reduce the percentage of missing data in the originally given
input matrix W . The reported results show that the Alterna-
tion applied to this partially or totally filled in matrix gives
better results than when it is applied to the originally given
input matrix.

3.2.2 Real Data

A procedure similar to the one applied to the synthetic data
is now used with real data. The two objects studied in these
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Fig. 17 (left) First object used for the real scene; (right) feature point trajectories represented in the image plane

Fig. 18 First object; (left) 3D reconstruction; (middle) recovered camera motion; (right) enlargement of the recovered camera motion

Fig. 19 First object: (left) mean of the rms in logarithmic scale, for different percentages of missing data; (right) mean of the rmsall in logarithmic
scale, for different percentages of missing data

real data experiments are shown in Fig. 17 (left) and Fig. 20
(left). For each object, a video sequence with a resolution of
640 × 480 pixels is recorded and a single rotation around
a vertical axis is performed. Feature points are selected

by means of a corner detector algorithm proposed in [19]
(Chap. 11, pp. 378–380). Concretely, features are selected
by using the Harris’ corner detector [10]. First of all, the gra-
dient of the image is computed. Then, the quality of the fea-
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Fig. 20 (left) Second object used for the real scene; (right) feature point trajectories represented in the image plane

tures is measured by the Harris’ criterion (see [19], Chap. 4,
p. 91). Only features with a measure of quality higher than
a given threshold are considered (in the current experiments
the threshold has been set to 0.01). Next, the image is split
into tiles, in order to obtain a more uniform feature selection.
Finally, features are selected in each tile in decreasing order
of quality (a maximum of 350 features per tile are selected
in our experiments). Once the features are selected, the it-
erative feature tracking algorithm presented [19] (Chap. 11,
pp. 380–390) is used. Feature points are tracked by minimiz-
ing the sum of squared differences between two consecutive
frames.

As in the previous case, all the points are initially known
in Wall, because only full trajectories are considered. Hence,
during the experiments, different matrices containing miss-
ing data are automatically generated by removing parts of
random columns (see Sect. 3.1), as in the synthetic data ex-
periment. In most of the cases, the error values are larger
than in the synthetic case. The problem is that both objects
do not rotate so much, as it can be seen in the plot of the
trajectories (Fig. 17 (right) and Fig. 20 (right)). Hence, the
obtained matrices of trajectories are not of full rank (4) and
we have to deal with a degenerate case.

In the first sequence, 87 points distributed over the
squared-face-box are tracked along 101 frames. Feature
point trajectories are plotted in Fig. 17 (right). Figure 18
shows an example of the recovered shape (left) and motion
((middle) and (right)) obtained by applying Alternation to
the matrix previously filled in with the proposed iterative
scheme. In this example, the originally given input matrix
contains only about 10% of missing data (recall that this
10% of missing data has been removed from the initially
known trajectory matrix: Wall).

The resulting rms obtained for different percentages of
missing data are presented in Fig. 19 (left). It can be seen
that the Alternation applied to the matrix previously filled

in with the iterative scheme performs better than applied di-
rectly to the originally given input matrix, for any percent-
age of missing data. The rmsall, which takes into account
all the entries in the matrix W , is plotted in Fig. 19 (right).
Again, this error can be computed due to the fact that,
in these particular experiments, the matrix Wall is initially
known. As in the rms, the rmsall is smaller when the pro-
posed scheme is previously used to fill in the given matrix;
both values have been computed as introduced in Sect. 3.1.

The second sequence consists of 61 frames and 188 fea-
ture points. Feature point trajectories are plotted in Fig. 20
(right). Figure 21 shows an example of the recovered
shape (left) and motion ((middle) and (right)) obtained by
applying Alternation to the matrix filled in with the pro-
posed iterative scheme. The originally given input matrix
contains only about 10% of missing data.

In this second object, the error values are higher than in
the first object, as it can be seen in Fig. 22. The rms (left) and
the rmsall (right) are smaller when the Alternation is applied
to the matrix filled in with the proposed iterative scheme
than when applied to the originally given input one, for any
percentage of missing data.

As a conclusion from the real data experiments, it can be
observed that the Alternation applied to the matrix filled in
with the proposed iterative scheme gives better results than
when it is directly applied to the originally given input ma-
trix, even when the percentage of missing data is low.

3.3 Iterative Multiresolution Scheme by Using Different
Factorization Techniques

This section contains experimental results obtained when
Powerfactorization [11] and the Alternation/Damped New-
ton Hybrid [2] are considered in the iterative multiresolution
scheme and also at the final step, to factorize the resulting
whole matrix. Therefore, results obtained when these two
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Fig. 21 Second object: (left) 3D reconstruction; (middle) recovered camera motion; (right) enlargement of the recovered camera motion

Fig. 22 Second object: (left) mean of the rms in logarithmic scale, for different percentages of missing data; (right) mean of the rmsall in
logarithmic scale, for different percentages of missing data

factorization techniques are applied to an originally given
input matrix, which can contain a high percentage of miss-
ing data, are compared to the results obtained when these
techniques are applied to the corresponding matrix previ-
ously filled in with the proposed scheme.

Since the main objective of including this section is to
show that the proposed scheme is also valid with other fac-
torization techniques, only experiments with a synthetic ob-
ject are provided. Concretely, the object presented in Fig. 11
is considered.

3.3.1 Powerfactorization

The Powerfactorization [11] technique is a variant of the Al-
ternation that consists in adding a normalization step at each
iteration. Concretely, Hartley et al. [11] propose to normal-
ize the rows of the second factor (S in this particular prob-
lem). The idea of the algorithm is similar to the one of the
Alternation; that is, factors are computed alternatively un-
til its product converge to the initial matrix W . Therefore,
computational cost is similar with both techniques.

Results obtained by using the Powerfactorization tech-
nique are shown in Fig. 23. It can be seen that results are
improved when the Powerfactorization is applied to the ma-
trix filled in with the proposed iterative scheme (denoted as
It-PF), when the percentage of missing data is higher than
20% (see dashed line in the plot).

3.3.2 Alternation/Damped Newton Hybrid

Buchanan et al. [2] present the Damped Newton method for
missing data matrix factorization. This method aims at min-
imizing an error function by performing a gradient descent
step, which is updated at each iteration. However, authors
point out that although this method is very fast when it is
close to the solution, it cannot be effective when the initial-
ization is far from minima. On the other hand, they also point
out that the Alternation technique is initially fast but it can
get stuck in local minimum, when the percentage of missing
entries is very high.

In order to get advantage of both techniques, Buchanan et
al. propose an hybrid method that combines them: the Alter-
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Fig. 23 Powerfactorization technique; mean of rms in logarithmic scale, for different percentages of missing data: (left) rms, considering only
initially known entries; (right) rmsall, considering all entries in the originally given input matrix

Fig. 24 Hybrid technique; mean of rms in logarithmic scale, for different percentages of missing data: (left) rms, considering only initially known
entries; (right) rmsall, considering all entries in the original matrix

nation/Damped Newton Hybrid. Hence, this Hybrid method
has an initial convergence and, at the same time, has the
power of non-linear optimization. The key point of this Hy-
brid method is to decide when to switch from one method
to the other. In the current paper, the third strategy pro-
posed in [2] is used, which consists in performing a set of
Alternation steps and then goes into the Hybrid scheme. In
each iteration, if the parameter that controls step length and
gradient-descent similarity is too large or worse than the last
iteration, a different number of Alternation steps are per-
formed.

Figure 24 shows the results obtained by applying the Hy-
brid technique to the originally given input matrix (denoted
as Hyb) and to the matrix filled in with the proposed itera-
tive scheme (denoted as It-Hyb). Recall that the Hybrid tech-
nique is also used inside the iterative scheme to fill in miss-

ing entries. It can be seen that, by using the Hybrid method,
the improvements on the results when the iterative scheme
is previously used are not significant (see for instance the
cases 40, 50 and 60% of missing data in Fig. 24 (left)). Ac-
tually, similar results are obtained when the Hybrid method
is directly applied to the originally given input matrix and
to the filled in with the proposed iterative scheme. This is
due to the fact that, in the Hybrid method, the number of
known entries in the matrix W is not as important as in
the Alternation and Powerfactorization techniques. There-
fore, it might be expected that no big improvements would
be obtained when the initial matrix was filled in with the pro-
posed iterative scheme. Hybrid method has been used with
the proposed scheme just to show that even in this case the
proposed approach can provide similar, or slightly better re-
sults.
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Fig. 25 Summary results obtained with the iterative scheme, considering different factorization techniques; (left) rms; (right) rmsall

3.4 Summary

Finally, Fig. 25 shows the results obtained with the iterative
scheme, when the three different factorization techniques
presented above are considered. The smallest error for this
particular problem is obtained when the Alternation tech-
nique is considered in the proposed iterative multiresolution
scheme.

The Hybrid method has a high computational cost, which
makes it less suitable than the Alternation to be used inside
the proposed iterative multiresolution scheme. In particu-
lar, the computational cost of the Hybrid method is about
100 times more expensive than the one of Alternation or
Powerfactorization. Consequently, when it is applied inside
the proposed iterative scheme (It-Hyb), the computational
cost of the scheme is even higher, depending on the number
of processed matrices. For instance, in the case of 20% of
missing data (there is a high number of submatrices to be
processed), the It-Hyb scheme takes about 107 times more
than It-Alt or It-PF; while in the case of 50% of missing data
It-Hyb takes about 103 times more than It-Alt or It-PF.

4 Conclusions and Future Work

This paper presents an iterative multiresolution scheme for
tackling the SFM problem when factorization techniques
may fail due to a high ratio of missing data. The idea of
the iterative multiresolution scheme is to take sub-matrices
of the input matrix with a low percentage of missing data,
apply a factorization technique to obtain the shape S and
motion M and hence recover the missing entries with the
product MS. The goal is to improve the results obtained
when a factorization technique is applied to the matrix filled

in with this iterative scheme instead of directly to the origi-
nally given input one, which contains a lower percentage of
known data.

An evaluation study of the performance of the proposed
scheme is done. Although the study is focused on the Al-
ternation technique, results obtained with different factor-
ization techniques are provided. In particular, the Powerfac-
torization and the Alternation/Damped Newton Hybrid are
considered, both to factorize the sub-matrices and to recover
the motion and shape of the whole matrix at the final step.
It has been shown that, when the percentage of missing data
is high, the Alternation and Powerfactorization techniques
applied to the matrix filled in with the proposed iterative
scheme gives better results than when applied directly to the
originally given input matrix W . However, when the ratio
of missing data is low, every studied factorization technique
performs quite well directly applied to the originally given
input matrix directly and it is not necessary to use the itera-
tive scheme. In the case of the Hybrid technique, similar re-
sults are obtained with both strategies. The goodness of the
results is measured with the root mean square error (rms)
and also with the rmsall, which takes into account all the
entries in the initially full matrix Wall.

In the experiments with synthetic data, recovered shape
and motion matrices are also studied. In conclusion, the pro-
posed scheme can be used to obtain the shape and motion
when the factorization techniques do not perform as well as
expected due to the high percentage of missing data.

As a future work, we would like to extend the iterative
multiresolution scheme to handle scenes with multiple ob-
jects. Furthermore, it would be interesting to use the iterative
scheme in applications different from the SFM.
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