toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Muhammad Anwer Rao; Fahad Shahbaz Khan; Joost Van de Weijer; Jorma Laaksonen edit   pdf
doi  openurl
  Title Combining Holistic and Part-based Deep Representations for Computational Painting Categorization Type Conference Article
  Year 2016 Publication 6th International Conference on Multimedia Retrieval Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Automatic analysis of visual art, such as paintings, is a challenging inter-disciplinary research problem. Conventional approaches only rely on global scene characteristics by encoding holistic information for computational painting categorization.We argue that such approaches are sub-optimal and that discriminative common visual structures provide complementary information for painting classification. We present an approach that encodes both the global scene layout and discriminative latent common structures for computational painting categorization. The region of interests are automatically extracted, without any manual part labeling, by training class-specific deformable part-based models. Both holistic and region-of-interests are then described using multi-scale dense convolutional features. These features are pooled separately using Fisher vector encoding and concatenated afterwards in a single image representation. Experiments are performed on a challenging dataset with 91 different painters and 13 diverse painting styles. Our approach outperforms the standard method, which only employs the global scene characteristics. Furthermore, our method achieves state-of-the-art results outperforming a recent multi-scale deep features based approach [11] by 6.4% and 3.8% respectively on artist and style classification.  
  Address New York; USA; June 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) ICMR  
  Notes LAMP; 600.068; 600.079;ADAS Approved no  
  Call Number Admin @ si @ RKW2016 Serial 2763  
Permanent link to this record
 

 
Author Jaume Amores; David Geronimo; Antonio Lopez edit   pdf
openurl 
  Title Multiple instance and active learning for weakly-supervised object-class segmentation Type Conference Article
  Year 2010 Publication 3rd IEEE International Conference on Machine Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords Multiple Instance Learning; Active Learning; Object-class segmentation.  
  Abstract In object-class segmentation, one of the most tedious tasks is to manually segment many object examples in order to learn a model of the object category. Yet, there has been little research on reducing the degree of manual annotation for
object-class segmentation. In this work we explore alternative strategies which do not require full manual segmentation of the object in the training set. In particular, we study the use of bounding boxes as a coarser and much cheaper form of segmentation and we perform a comparative study of several Multiple-Instance Learning techniques that allow to obtain a model with this type of weak annotation. We show that some of these methods can be competitive, when used with coarse
segmentations, with methods that require full manual segmentation of the objects. Furthermore, we show how to use active learning combined with this weakly supervised strategy.
As we see, this strategy permits to reduce the amount of annotation and optimize the number of examples that require full manual segmentation in the training set.
 
  Address Hong-Kong  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) ICMV  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ AGL2010b Serial 1429  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri; W. Diaz edit  doi
isbn  openurl
  Title Fast Approximated Discriminative Common Vectors using rank-one SVD updates Type Conference Article
  Year 2013 Publication 20th International Conference On Neural Information Processing Abbreviated Journal  
  Volume 8228 Issue III Pages 368-375  
  Keywords  
  Abstract An efficient incremental approach to the discriminative common vector (DCV) method for dimensionality reduction and classification is presented. The proposal consists of a rank-one update along with an adaptive restriction on the rank of the null space which leads to an approximate but convenient solution. The algorithm can be implemented very efficiently in terms of matrix operations and space complexity, which enables its use in large-scale dynamic application domains. Deep comparative experimentation using publicly available high dimensional image datasets has been carried out in order to properly assess the proposed algorithm against several recent incremental formulations.
K. Diaz-Chito, F.J. Ferri, W. Diaz
 
  Address Daegu; Korea; November 2013  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-42050-4 Medium  
  Area Expedition Conference (up) ICONIP  
  Notes ADAS Approved no  
  Call Number Admin @ si @ DFD2013 Serial 2439  
Permanent link to this record
 

 
Author Jaume Amores edit  doi
isbn  openurl
  Title Vocabulary-based Approaches for Multiple-Instance Data: a Comparative Study Type Conference Article
  Year 2010 Publication 20th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 4246–4250  
  Keywords  
  Abstract Multiple Instance Learning (MIL) has become a hot topic and many different algorithms have been proposed in the last years. Despite this fact, there is a lack of comparative studies that shed light into the characteristics of the different methods and their behavior in different scenarios. In this paper we provide such an analysis. We include methods from different families, and pay special attention to vocabulary-based approaches, a new family of methods that has not received much attention in the MIL literature. The empirical comparison includes seven databases from four heterogeneous domains, implementations of eight popular MIL methods, and a study of the behavior under synthetic conditions. Based on this analysis, we show that, with an appropriate implementation, vocabulary-based approaches outperform other MIL methods in most of the cases, showing in general a more consistent performance.  
  Address Istanbul, Turkey  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4244-7542-1 Medium  
  Area Expedition Conference (up) ICPR  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ Amo2010 Serial 1295  
Permanent link to this record
 

 
Author David Vazquez; Antonio Lopez; Daniel Ponsa edit   pdf
isbn  openurl
  Title Unsupervised Domain Adaptation of Virtual and Real Worlds for Pedestrian Detection Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3492 - 3495  
  Keywords Pedestrian Detection; Domain Adaptation; Virtual worlds  
  Abstract Vision-based object detectors are crucial for different applications. They rely on learnt object models. Ideally, we would like to deploy our vision system in the scenario where it must operate, and lead it to self-learn how to distinguish the objects of interest, i.e., without human intervention. However, the learning of each object model requires labelled samples collected through a tiresome manual process. For instance, we are interested in exploring the self-training of a pedestrian detector for driver assistance systems. Our first approach to avoid manual labelling consisted in the use of samples coming from realistic computer graphics, so that their labels are automatically available [12]. This would make possible the desired self-training of our pedestrian detector. However, as we showed in [14], between virtual and real worlds it may be a dataset shift. In order to overcome it, we propose the use of unsupervised domain adaptation techniques that avoid human intervention during the adaptation process. In particular, this paper explores the use of the transductive SVM (T-SVM) learning algorithm in order to adapt virtual and real worlds for pedestrian detection (Fig. 1).  
  Address Tsukuba Science City, Japan  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Tsukuba Science City, JAPAN Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference (up) ICPR  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ VLP2012 Serial 1981  
Permanent link to this record
 

 
Author Jose Carlos Rubio; Joan Serrat; Antonio Lopez; N. Paragios edit   pdf
url  isbn
openurl 
  Title Image Contextual Representation and Matching through Hierarchies and Higher Order Graphs Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2664 - 2667  
  Keywords  
  Abstract We present a region matching algorithm which establishes correspondences between regions from two segmented images. An abstract graph-based representation conceals the image in a hierarchical graph, exploiting the scene properties at two levels. First, the similarity and spatial consistency of the image semantic objects is encoded in a graph of commute times. Second, the cluttered regions of the semantic objects are represented with a shape descriptor. Many-to-many matching of regions is specially challenging due to the instability of the segmentation under slight image changes, and we explicitly handle it through high order potentials. We demonstrate the matching approach applied to images of world famous buildings, captured under different conditions, showing the robustness of our method to large variations in illumination and viewpoint.  
  Address Tsukuba Science City, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference (up) ICPR  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RSL2012a; Serial 2032  
Permanent link to this record
 

 
Author German Ros; Jesus Martinez del Rincon; Gines Garcia-Mateos edit   pdf
url  isbn
openurl 
  Title Articulated Particle Filter for Hand Tracking Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3581 - 3585  
  Keywords  
  Abstract This paper proposes a new version of Particle Filter, called Articulated Particle Filter – ArPF -, which has been specifically designed for an efficient sampling of hierarchical spaces, generated by articulated objects. Our approach decomposes the articulated motion into layers for efficiency purposes, making use of a careful modeling of the diffusion noise along with its propagation through the articulations. This produces an increase of accuracy and prevent for divergences. The algorithm is tested on hand tracking due to its complex hierarchical articulated nature. With this purpose, a new dataset generation tool for quantitative evaluation is also presented in this paper.  
  Address Tsukuba Science City, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference (up) ICPR  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RMG2012 Serial 2031  
Permanent link to this record
 

 
Author Jiaolong Xu; Sebastian Ramos;David Vazquez; Antonio Lopez edit   pdf
doi  openurl
  Title Cost-sensitive Structured SVM for Multi-category Domain Adaptation Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3886 - 3891  
  Keywords Domain Adaptation; Pedestrian Detection  
  Abstract Domain adaptation addresses the problem of accuracy drop that a classifier may suffer when the training data (source domain) and the testing data (target domain) are drawn from different distributions. In this work, we focus on domain adaptation for structured SVM (SSVM). We propose a cost-sensitive domain adaptation method for SSVM, namely COSS-SSVM. In particular, during the re-training of an adapted classifier based on target and source data, the idea that we explore consists in introducing a non-zero cost even for correctly classified source domain samples. Eventually, we aim to learn a more targetoriented classifier by not rewarding (zero loss) properly classified source-domain training samples. We assess the effectiveness of COSS-SSVM on multi-category object recognition.  
  Address Stockholm; Sweden; August 2014  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN Medium  
  Area Expedition Conference (up) ICPR  
  Notes ADAS; 600.057; 600.054; 601.217; 600.076 Approved no  
  Call Number ADAS @ adas @ XRV2014a Serial 2434  
Permanent link to this record
 

 
Author Xialei Liu; Marc Masana; Luis Herranz; Joost Van de Weijer; Antonio Lopez; Andrew Bagdanov edit   pdf
doi  openurl
  Title Rotate your Networks: Better Weight Consolidation and Less Catastrophic Forgetting Type Conference Article
  Year 2018 Publication 24th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2262-2268  
  Keywords  
  Abstract In this paper we propose an approach to avoiding catastrophic forgetting in sequential task learning scenarios. Our technique is based on a network reparameterization that approximately diagonalizes the Fisher Information Matrix of the network parameters. This reparameterization takes the form of
a factorized rotation of parameter space which, when used in conjunction with Elastic Weight Consolidation (which assumes a diagonal Fisher Information Matrix), leads to significantly better performance on lifelong learning of sequential tasks. Experimental results on the MNIST, CIFAR-100, CUB-200 and
Stanford-40 datasets demonstrate that we significantly improve the results of standard elastic weight consolidation, and that we obtain competitive results when compared to the state-of-the-art in lifelong learning without forgetting.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) ICPR  
  Notes LAMP; ADAS; 601.305; 601.109; 600.124; 600.106; 602.200; 600.120; 600.118 Approved no  
  Call Number Admin @ si @ LMH2018 Serial 3160  
Permanent link to this record
 

 
Author Gema Rotger; Felipe Lumbreras; Francesc Moreno-Noguer; Antonio Agudo edit   pdf
doi  openurl
  Title 2D-to-3D Facial Expression Transfer Type Conference Article
  Year 2018 Publication 24th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2008 - 2013  
  Keywords  
  Abstract Automatically changing the expression and physical features of a face from an input image is a topic that has been traditionally tackled in a 2D domain. In this paper, we bring this problem to 3D and propose a framework that given an
input RGB video of a human face under a neutral expression, initially computes his/her 3D shape and then performs a transfer to a new and potentially non-observed expression. For this purpose, we parameterize the rest shape –obtained from standard factorization approaches over the input video– using a triangular
mesh which is further clustered into larger macro-segments. The expression transfer problem is then posed as a direct mapping between this shape and a source shape, such as the blend shapes of an off-the-shelf 3D dataset of human facial expressions. The mapping is resolved to be geometrically consistent between 3D models by requiring points in specific regions to map on semantic
equivalent regions. We validate the approach on several synthetic and real examples of input faces that largely differ from the source shapes, yielding very realistic expression transfers even in cases with topology changes, such as a synthetic video sequence of a single-eyed cyclops.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) ICPR  
  Notes ADAS; 600.086; 600.130; 600.118 Approved no  
  Call Number Admin @ si @ RLM2018 Serial 3232  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: