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Abstract—Domain adaptation addresses the problem of ac- Training classifiers for multi-category object recognitio
curacy drop that a classifier may suffer when the training  can be cast as a structured SVM (SSVM) problem. Compared
data (source domain) and the testing data (target domain) &  to other approaches such as the one-versus-all strategy, an
drawn_ from diff(_erent distributions. In this work, we focus on interesting advantage of SSVM is the possibility of introimg
domain adaptation for structured SVM (SSVM). We propose iy 5 natural way) class-specific penalties during the ingin
a cost-sensitive domain adaptation method for SSVM, namely o o ciassifiers. In fact, such classification setup is irequ

COSS-SSVM. In particular, during the re-training of an adapted . | d licati h t for diff
classifier based on target and source data, the idea that we ghore N many real-world applications where cost vary for diiier-

consists in introducing a non-zero cost even for correctlylassified €Nt types of misclassification errors. This type of learning
source domain samples. Eventually, we aim to learn amore tget- 1S denoted as cost-sensitive learning [15]. For example, in
oriented classifier by not rewarding (zero loss) properly aissified ~ medical diagnosis, misclassifying a cancer as non-carscer i
source-domain training samples. We assess the effectivaseof = much more serious than misclassifying a non-cancer as cance

COSS-SSVM on multi-category object recognition. since patients could lose their life because of the delay in
the correct diagnosis and treatment. Similarly, miscigsgi
. INTRODUCTION a spam message as a useful e-mail can be easily and quickly

. . . corrected by the human receiver, while misclassifying dulse
Large amounts of visual data are being generated daily_ - a5 spam can be more risky if it actually contains

and made available in many domains, for example, imageg,oriant information that requires quick attention.
uploaded by internet users. However, the lack of semantic
labels for these images makes difficult their use for compute  There is an increasing literature on SVM-based domain
vision applications that rely on learned classifiers. Inséhe adaptation approaches [10], [11], [12], [13] that show very
situations, it is reasonable to apply a classifier trainethwi good adaptation results for different vision applicatioBse
existing labeled data to newly collected data. Howeves thi of the simplest strategies is to retrain a classifier with etix
procedure commonly results in a significant drop of thegombination of source and target samples. Another popular
classifier's accuracy. This is because the training datar¢so  approach is the adaptive SVM (ASVM) [10], which learns a
domain) and the testing data (target domain) are drawn froderturbation of the source-domain decision classifier iggus
different probability distributions. target-domain training samples. The combination of soanze

On the one hand, the straightforward solution consists ifrget samples may have limited adaptation ability since it
reproducing for the target domain the effort already dondreats all the training samples equalllyg. the misclassification
for the source domainje, data acquisition and labeling, COStS on source and target domain samples are regarded as
and posterior training of the desired classifiers. Howetwss, ~€dually important. In this way, the final classifier may opera
may turn out in a waste of resources since labeling usuallpn both domains but not being sufficiently discriminative in
involves tiresome manual work prone to errors, and cotiecti he target domain. The weighted combination method treats
new images is not always straightforward. On the other handhe source and target domains differently by setting caffier
some domain adaptation methods can exploit existing seurcé!YPer-parameters in the SVM loss term, which tends to per-
domain labeled datee(g, Caltech256 [1], PASCAL2010 [2], form better than the straightforward combination methad.[1
ImageNet [3]) to complement relatively few target-domedied
for obtaining new target-oriented classifiers. When the @iom
adaptation requires that all the target-domain data idéabhé
is calledsupervisedif this data is totally unlabeled the domain
adaptation is denoted amsupervisedotherwise it is denoted
as semi-supervised

Generally, most of the SVM-based domain adaptation
methods can be extended to SSVM. However, in this work,
we propose a new strategy based on the misclassification cost
Similarly to the weighted combination method, our adaptati
process treats the source-domain samples differently than
the target-domain ones. In particular, during the re-itngin

The domain adaptation problem has received considerabl@daptation) of a classifier based on target and source data,
attention by machine learning researchers [4], [5], [6] ara$t ~ we explore the idea of introducing a non-zero cost even for
recently by computer vision ones [7], [8], [9] and severalcorrectly classified source domain samples. If the classifie
domain adaptation techniques have been developed withimakes a correct prediction to the label of a source-domain
both communities. In this work, we follow the supervised sample, we regard it as risky, thus the loss in the objective
domain adaptation setting and focus on multi-categoryatbje function is increased. However, this situation should ss le
recognition between domains [2], [3]. risky than making an incorrect prediction about the label of



either a source-domain sample or a target-domain one. &t othmisclassification error for the source and target samples as
words, we aim to learn a more target-oriented classifier byvay of improving the accuracy of the adapted classifier in the
not rewarding (zero loss) properly classified source-domaitarget domain.

training samples.

In order to emphasize that our domain adaptation proposal
for SSVM is cost-sensitive, we call it COSS-SSVM. We assess Ill. PROPOSEDMETHOD
the effectiveness of COSS-SSVM by relying on publicly avall
able object recognition benchmarks. Our experiments sho
that COSS-SSVM achieves a recognition accuracy comparab,
to the state-of-the-art methods.

In this work, we focus on SSVM based methods. Such
ethods consist of a loss terf{w; D) that captures the error
ith respect to the training dat® and a regularization term

R(w) that penalizes model complexity. We use SSVM for
The rest of the paper is organized as follows. In Sect. licross-domain multi-category object recognition. For doma
we confront COSS-SSVM to related previous works. In Sectadaptation, first we provide a straightforward extensiothef
lll, COSS-SSVM s described in detail. Sect. IV shows theSVM-based domain adaptation methods to SSVM, including
obtained results in the context of visual object recognitio the mixed (or weighted) combination of source and target
Finally, Sect. V summarizes the main conclusion of our work.samples strategy and adaptive SVM. Similar to the weighted
combination method, we propose a cost-sensitive method,
. RELATED WORK COSS-SSVM, to take into account the differences of the sourc
and target domain samples.

The dataset biag16] that refers to the differences between

data distributions of train and test sets can hurt a variety In this work, we denote a®; the labeled source domain
of vision tasks. Considering the different datasets asediff and asD} the labeled target domain. The vector concatenation
ent domains we can find strong connections between thiis represented aa = [b’,c/|’, wherea, b, andc are column
phenomenon and the domain adaptation problem. To addregsctors, and the zero vector is denoted(y

the latter problem, there have been proposed a significant

amount of methods within the computer vision community,

which commonly are based on feature or model transformatiop. Structured SVM for multi-category classification
techniques.

The simplest way to train a multi-category classifier is

Regarding feature-transformation approaches, recenthf,s gne-versus-all strategy, for instance, using SVM ag bas
Hoffmanet al[17] proposed a method to learn a feature transassifier. However, recent works on object recognitioro als

formation and a classifier in a jointly fashion. Respect taelo ¢4, promising results when relying on SSVM [22], with

transformation approaches during the last five years severge advantage of admitting class-dependent misclasgficat
methods that adapt the parameters of discriminative fleissi penalties during the training process. Accordingly, we use

commonly SVM, have been proposed. The Adaptive SVMggy\ as our base classifier. We study domain adaptation
(ASVM) proposed by Yangt al[10] is a remarkable work that  5n5raches for this classifier, which are rarely explored-co
has been the motivation of consecutive successful appesachpared to the SVM-based method. We start by introducing the

like the Protective Model Transfer SVM (PMT-SVM) [18], f5myjation of the SSVM for multi-category classification.
which adapts the SVM parameters between different domains

by adding a constrain in the regularization term that erderc Assume we are given an image setfofobject categories,
the target model to be close to the source one. D = {(Xi,yi)|y: € {1,..., K}}¥,. Amulti-class SVM solves

In contrast to the model parameter adaptation methodg‘e optimization problem:
which mainly relies on regularization term, other SVM-ldhse
domain adaptation strategies make use of the loss tengn,

weighted combination of both domain samples (WDSVM) min1|\WH2+CZ£i1§i
[14], [12]. The WDSVM method weights the loss function sit. 2W k, &3>0 (1)
values differently for the source and target examples by W (X;) — W, d(%:) > Alyi, k) — &,

using two distinct SVM hyperparametefy and Cr. Cost-
sensitive learning as a type of learning that takes into @attco
different misclassification costs has been used in many re

world applications [15], [19], [20], while rarely exploredr Kd . !
. : . : Iy R*¢ concatenates the weights for all classasy;, k) is the
domain adaptation. These techniques set different cleestitin loss function which measures a confusion cost associatid wi

costs to different samples during the learning. The finall goa L S ,

is to minimize the total cost. By setting a higher cost to thepredlctm_g class when the true label af; is y;. In this work,
samples of some classes the learned classifier can improWe considen-1 loss,i.e. A(y;, k) =0, if y; = k, otherwisel.
the performance for these classes. A typical application o S?/I\T uggflﬁ]sz;;zi‘;'sig'%a“??) E)Stortélel;ncésdsbc;:/&ble) bxhlijcsﬁqg
this learning is to solve the class imbalance problem [15]; ' ! q. P Y

Also, it can be also applied in multiclass problems [21]. An Is a concatenation of the features of each class:

here ¢(x;) is a feature vector of dimensio#, eachw; is
he weight vector of linear classifidr, w = [w}, ..., W] €

interesting application for face recognition in controtess is (X, y) = [01(X, ), -, i (X, )]

proposed in [19]. In this case the cost of confusing an altbwe ’ ¢()’() ’ it g; _ e @
user with other is lower than confusing it with a non-allowed Yr(X,y) = { ’ )

one. These methods motivated us to set different costs to the 0, otherwise.



B. Baseline 1: Mixture of source and target domain sampleshis cost-sensitive approach, the final classifier is exgbtd
(MIX-SSVM and DW-SSVM) obtain higher accuracy in the target domain. Our cost-teasi

One of the most simplest ways for domain adaptation isObJeCUVe function is defined as follows:

to train a classifier on the union of the source and target
domain samples, we denote this procedure by MIX-SSVM. 1 NT NS
Another extension is to consider different weights for the min §|\w||2 +CY L +0y L&

source- and target-domain samplies,domain weighted SVM st Vi gy, 5,67 >0

(DWSVM) [14]. For SSVM, we can apply the domain weight 1B (5. N Do S AT o\ _ T v e T
strategy and we denote it by DW-SSVM. Note that the MIX- a,ggf’ yz‘)) _VV\(/%((X)Z f y))iAAS((y " y)) _%S’ X)z ‘EE%S
SSVM is the special case of DW-SSVM, where the source and 7Y Y = Yi-¥ i L )
target domain weights are the same. We write the DW-SSVI\/':Or AT

objective function as follows: (yi,y), we use the same-1 loss as in Eq.(1), while

for AS(y;,y), we define the following loss function:

1 NT NS
mln—||WH2+CT Zi:1 EiTJFCS Z_j:l EJS S vel0,1], ify; =y,
20 5 o1 A (y;,y) = : (7)
sit, Vi, gy, &,& >0 (3) 1, otherwise,
WO(Xi, yi) —WP(Xi,y) > Alyi,y) — & % € Df . : -
~ Lg wherey is asoftloss for the source-domain correct predictions.
W (X, y;) = WR(X;,y) > Aly;,y) — &, % € D &y P

This means that even when the classifier correctly prediets t
MIX-SSVM corresponds to the case of equal hyperparametergbel of a source-domain sample, since it may confuse the
Cs andCr. Following [14], [12], the values of these hyperpa- target-domain classification, we treat it agiaht misclassi-
rameters are selected by minimizing the cross validatioorer fication. Thus, we increase the loss in the objective functio

on the target training set. by v € [0,1]. If v = 0, we have the standard MIX-SSVM.
If v = 1, correctly predicting the label of a source-domain
C. Baseline 2: Adaptive Structured SVM (ASSVM) sample is treated with the same cost as incorrectly predicti

the label of any other samplég. source and target domain

1) Adaptive SVM: ASVM is a model-transform-based gnes. In Sect. IV, we show the impact of choosing different
method, which adapts the model parameters from the sourGgyyes.

Dy to the target domai®] (I indicates labeled samples) by

minimizing the following objective function:
9 9 0b) IV. EXPERIMENTAL RESULTS

1
mWiTn§||WT —w|?+CcLw”; D), (4) In the following, we evaluate our approach on standard
multi-category object recognition datasets. We first compa
where the regularization terfiw” —w*||? constrains the target the SSVM with the one-versus-all linear SVM on multi-class
modelw” to be close to the source ome’. classification. The classifiers are trained with labeleds®or

. . target domain samples without domain adaptation. Then, we
AS\Z/?\AA}%agg\\I/eMSigggrt;ireﬁtf(?x\,’\;réA%,Se\q\éZ??e;ﬁsvr}s.g})Of study the impact of the soft cost in the proposed COSS-
, faig : X P SSVM. ! We test on all the source-target domain splits with
can be written by using the feature representation of Edn(2)

; S . different v values. Finally, following the evaluation protocol
the structured SVM loss fun.ct|0n. The objective function of; | [17], we compare the proposed method to MIX-ASSVM,
ASSVM is written as follows:

) DW-SSVM, ASSVM as well as other state-of-the-art methods.
T
min 3 lwl — WSH2 +C Zfil &

st, Viy, x; €D, &>0 (5) A. Dataset and Experiment Setting

WX, yi) — W (X, y) > Ay, y) — &, Datasets: We use the benchmark domain adaptation
datasets calledOffice [7] and Caltech256[1]. The Office

D. Cost-sensitive Structured SVM for Domain Adaptationdataset is a collection of images from three different do-
(COSS-SSVM) mains: amazon webcam anddslr. Each domain containsl

Our proposed domain adaptation method is based on mixcategories of common office objects. Tiaenazondomain

SSVM. As it is shown in Eq.(3), the MIX-SSVM method is a collection of product images from amazon.com. The

simply combines source and target samples but does not tal\é)éebcamand dslr contain images taken by a webcam and a

into the misclassification cost on different domains. Sitiee SIr camera, respectively. Tialtech256dataset containsse

labeled target training samples are generally much lesstiten  CPIECt categories from a single domain. We useltheommon
source samples, the final classifier can still be source-tomaategories shared by the tiealtech256and Office for our
oriented. We propose a cost-sensitive method which corssideSXPeriments.

different miss-classification cost for different domaimgdes. Image representation: We use the image representation
Concretely, when the classifier correctly predicts thesclaBel  provided by [23] (SURF bag of words image features with a
for a target domain sample, the cost(s However, if the dictionary of 800 words). Following [23], we apply PCA to
sample comes from the source domain, we still increase a soffte source and target data and @8edimensional features in
loss in the objective function. Since our goal is to minintize  a|| the experiments.

training error in the target domain, correctly predictingpairce
domain sample may confuse the target domain classifiergusin we will make the source code available.




Experiment setup: We follow the setup of [7], [23] and ARCT: A general feature transform method proposed in
[17]. This means that we ug® training examples per category [28], using both domain data. We compare with the results
for amazonsource and for all other source domains argl  available from [17].
labeled examples per category for each target domain. We use
the same20 random train/test splits available from [17] for
reporting the average performance.

HFK: A feature transform based method that learns a latent
common space between source and target as well as a common
space classifier [8]. We compare with the results availaiole f

[17].

GFK: The geodesic flow kernel method [23], using all
Before performing the domain adaptation, we investigatesource and target data (including testing data). We apply 1-

B. Multi-category Classification Accuracy of SSVM classifie

the performances of our base classifiers: nearest neighbour classifier with the kernel as in [17].
SRC trained with only the source domain samples. MMDT: Max-margin domain transfer method of [17],
) . ) which learns a mapping from target domain to source domain
TAR trained with only target domain samples. as well as a discriminative classifier trained with the mappe
We compare our SSVM multi-class classifier to thassic ~ (@rget features and the source domain ones.
one-versus-all classifier. Table | shows the detailed coinpa ASSVM MIX-SSVMand DW-SSVM see Sect. IlI.
on each source-target domain pair. For the one-versuiswadrl ) ] )
SVM, we tested three different solvers: Liblinear [24], a4t ResultsThe multi-category accuracy for each domain split

Pegaso [25] and Mosek QP solver [26]. Our SSVM solver is'S shown in Table II. Table Ill shows the average accuracy
implemented based on the LBFGS optimization toolbox [27].0f €ach algorithm on all domain splits. The recently pro-

The hyperparametef’ of each SVM is first tuned by cross- posed method [17_] reported state-of-the-art results and ou
validation according to the mean accuracy on all targetsgata COSS-SSVM achieves comparable accuracy on all domain
then we fix the value for all the experiments. The results showplits, belng Sllghtly better on the average accuracy. Our
that our SSVM classifier constantly outperforms one-versusASSVMimplementation also reaches the same performances

all methods. Accordingly, based on this SSVM base classifie@S MMDT, showing promising performance of SSVM-based
we implement our domain adaptation algorithms. domain adaptation methods. Compared to MIX-SSVM, our

COSS-SSVM shows a significant improvement for all domain

] ] ] splits. In fact, the MIX-SSVM is the special case of COSS-
C. The Impact ofy in the COSS-SSVM Domain Adaptation ssvM characterized by = 0.

In this section, we evaluate the domain adaptation of ] )

the COSS-SSVM under different values. Fig.1 shows the E. Discussion

classification accuracy on each source-target domain \air. The proposed COSS-SSVM method is a simple while
testedy from 0 to 1 with a step of0.1. Wheny = 0, which ~ effective strategy of domain adaptation. In this work wesim

is equal to the MIX-SSVM training, the domain adaptationfiy ~ for all the source domain samples, but considering
has the lowest accuracy on all testing pairs. Afncreases, instance level cost-sensitive learning and using a dynanst
the accuracy of the adapted classifier constantly improvesgnay improve the accuracy resulting from domain adaptation.
However, wheny reachesl, most of the adapted classifiers Ajthough our cost-sensitive approach is actually built on a
become worse, except the onesbr> W, W — A, C =W yery simple mixed combination of different domain samples,

and ¢ — D. The figure on the right hand side draws thejt could be complementary to other SVM-based domain adap-
overall accuracy on all domain splits. It shows clearly &  5tion methods.

domain adaptation reaches maximum accuragy-at0.9. This
experiment proves our assumption that correctly predjdtie

label of source domain samples should be taken into account
as a missclassification cost. Accordingly, we fix= 0.9 in In this paper, we present a simple but effective approach
the following experiments. to perform the task of adapting classifiers between differen
domains. Our method is based on the assumption that correctl
predicting the label of a source domain sample could be
considered as a missclassification cost for a target domain

In this section, we compare COSS-SSVM with multiple classifier. Thus we propose a cost-sensitive training egjyat

baselines. As we follow the same setting of Hoffman:2013f0 handle missclassification costs of source and target do-
we make use of the available evaluation protocol as well aghain samples differently, what we denoted as cost-seasitiv

V. CONCLUSIONS

D. Comparison with more Baselines

some available baseline results. structured SVM (COSS-SSVM). We apply this method to the
_ problem of multi-category object recognition betweenetiént
ASVM Adaptive SVM [10]. domains. Experiments on standard benchmarks demonstrate
PMT-SVM Projective model transfer SVM [18]. the effectiveness of our approach by a significant improveme

to the cost-insensitive methdce. MIX-ASSVM and compa-

ASVM and PMT-SVM are trained with only the target rable accuracy to other state-of-the-art methods. Finatiye
domain samples and a pre-trained source model. We use tligat our method can be also regarded as a complement to
implementation from [18] and use the MOSEK optimization other SVM-based domain adaptation methods. For instance we
toolkit [26] in our experiments. The multi-category cldigsis  could extend our method for unsupervised domain adaptation

are learned in a one-vs-all manner. exploiting the intrinsic compact structures of categoaesss



[ [ A=W [ A-D [ A-C [ WA [ WD [ W—C |

SRC (Liblinear) | 39.7+14 | 37.7+10 | 384+05 | 326+10 | 642+0.9 | 26.8+ 0.6
SRC (Pegasos) 37.1+ 13 | 345+ 11| 366+03 | 359+08 | 63.8+ 1.2 | 284+ 0.6
SRC (QP-Mosek)| 369+ 1.3 | 36.74+ 1.1 | 37.94+ 04 | 323+ 1.0 | 6284+ 1.0 | 27.14+ 05
SRC-SSVM | 423+ 08 | 384+ 0.6 | 39.84+ 0.3 | 39.2+ 04 | 653+ 0.7 | 33.7+ 0.5

[ [ D=A D—-W [ D—=C [ C—A C—-W [ C—=D |

SRC (Liblinear) | 322+ 0.7 | 708+ 1.1 | 252+ 04 | 370+ 08 | 308+ 15 | 320+ 1.0
SRC (Pegasos) 343+ 0.6 | 71.3+ 0.7 | 2794+ 0.3 | 389+ 1.0 | 2994+ 13 | 31.7+ 1.3
SRC (QP-Mosek)| 31.2+ 0.9 | 69.4+ 1.1 | 25,6+ 05 | 383+ 0.9 | 30.2+ 1.3 | 30.1+ 1.1
SRC-SSVM | 354+ 05| 715+ 0.7 | 2984+ 0.2 | 422+ 0.7 | 37.0+ 1.2 | 395+ 1.1

[ [ AW A—D | A>C | W—A WD | W—C |

TAR (Liblinear) | 57.14+ 1.0 | 4424+ 09 | 2654+ 0.6 | 451+ 1.2 | 479+ 1.7 | 2554+ 0.8
TAR (Pegasos)| 60.0+ 0.8 | 47.0+ 0.9 | 289+ 0.8 | 46.3+ 1.0 | 529+ 1.6 | 27.0+ 0.7
TAR (QP-Mosek) | 647+ 1.1 | 514+ 1.1 | 308+ 06 | 485+ 1.1 | 540+ 14 | 29.8+ 1.0
TAR-SSVM | 645+ 0.9 | 521+ 1.1 | 335+ 0.8 | 505+ 0.7 | 56.0+ 1.0 | 31.3+ 0.8

[ [ D—=A D—-W | D»C [ C—A C—>W | C—>D |

TAR (Liblinear) | 43.04+ 1.0 | 5644+ 09 | 26.64+ 0.7 | 444+ 1.1 | 56.6+ 1.0 | 445+ 1.6
TAR (Pegasos)| 449+ 0.9 | 609+ 1.0 | 284+ 0.8 | 458+ 1.1 | 58.2+ 1.0 | 50.0+ 1.4
TAR (QP-Mosek) | 47.8+ 1.0 | 631+ 11 | 2984+ 08 | 495+ 1.0 | 631+ 1.2 | 526+ 1.3
TAR-SSVM | 494+ 08 | 66.2+09 | 332+ 0.8 | 502+ 0.9 | 634+ 1.1 | 53.8+ 1.2

TABLE I. M ULTI-CATEGORY RECOGNITION ACCURACY ON TARGET DOMAINSTHE DOMAIN NAMES ARE IN ABBREVIATIONS: A: amazon W: webcam
D: dslr, C: Caltech256

[ [ AW [ A-D [ A-C [ WA | WD | W—=C |

SRC-SSVM | 423+ 08 | 384+ 0.6 | 39.84+ 03 | 39.2+ 04 | 653+ 0.7 | 337+ 05
TAR-SSVM | 645+ 0.9 | 5214+ 11 | 3354+ 0.8 | 5054+ 0.7 | 56.04+ 1.0 | 31.3+ 0.8
ARCT | 557+ 09 | 50.2+0.7 | 370+ 04 | 434+05 | 71.3+0.8 | 319+ 05
HFA | 618+ 11 | 527+ 0.9 | 31.1+£ 06 | 459+ 0.7 | 571+ 10 | 294+ 0.6

GFK | 565+ 0.8 | 453+ 09 | 386+ 04 | 458+ 0.6 | 73.8+ 0.7 | 32.6+ 0.6
MMDT | 65.1+1.2 | 545+ 1.0 | 39.7+ 05 | 506+ 0.8 | 625+ 1.0 | 348+ 0.8

ASVM 650+ 10| 516+1.1 | 309+06 | 486+ 11 | 544+ 15 | 29.8+ 1.0
PMT-SVM | 659+ 10 | 526+1.1 | 3234+ 06 | 49.0+£11 | 579+16 | 304+ 0.9
ASSVM | 60.0+0.9 | 4974+ 08 | 426+ 05 | 4954+ 05 | 6744+ 0.7 | 37.34+ 05
MIX-SSVM 519+ 1.1 | 455+ 05| 419+ 04 | 464+ 04 | 682+ 08 | 371+ 04
DW-SSVM | 559+ 1.1 | 487+ 0.6 | 445+ 04 | 492+ 04 | 720+ 1.0 | 38.0+ 0.5
COSS-SSVM | 57.2+ 1.1 | 488+ 06 | 444+ 04 | 503+ 04 | 724+ 1.1 | 37.8+ 0.6

[ [ DA [ D>W [ D=»C | C—A | C>W | C—>D ]
[ SRC-SSVM | 354+ 05 | 7156+ 0.7 | 298+E 02 | 422+ 0.7 | 37.0£ 12 | 395 1.1 |
[ TAR-SSVM | 4941 0.8 | 66209 | 33.2£ 0.8 | 502+ 0.9 | 634+L 1.1 | 53.8L 1.2 |

ARCT | 425105 ] 783L 05| 335L- 04 | 441+L 06 ] 550L 1.0 | 506L 08
HFA | 458109 | 621+L 0.7 | 31.0L 05 | 455+L 09 | 605L 09 | 51.0F 1.1
GFK | 458L 04 | 803L 0.7 | 333L 05 | 464L 07 | 61.0L 14 | 527L 12

MMDT | 504 L 07 | 742E 07 | 357£ 07 | 511X 07 | 629+ 1.1 | 53.0L 1.0

ASVM 480+ 1.1 | 635+ 11| 299+08 | 495+10 | 632+ 12 | 527+ 13
PMT-SVM | 486+ 1.1 | 665+1.2 | 309+0.8 | 500+ 1.0 | 643+12 | 5224+ 13
ASSVM | 486+ 05| 746+ 0.6 | 3554+ 05 | 534+ 0.7 | 636+ 1.2 | 527+ 1.0

MIX-SSVM | 458L 04 | 740L 05 | 33.8+- 04 | 50.7/L 06 | 5563L 1.0 | 49.4L 0.9
DW-SSVM | 49.2L 04 | 801L 05 | 364 L 04 | 53.3L 05 | 505L 11 | 51.4L 08
COSS-SSVM | 51.0£ 04 | 808L 05 | 36.9L 06 | 535L 05 | 604+ 11 | 51.0F 0.1

TABLE II. M ULTI-CATEGORY RECOGNITION ACCURACY ON TARGET DOMAIN~y = 0.9). BOLD INDICATES THE BEST RESULT FOR EACH DOMAIN
SPLIT. UNDERLINE INDICATES THE SECOND BEST RESULTTHE DOMAIN NAMES ARE IN ABBREVIATIONS: A: amazon W: webcam D: dslr, C: Caltech256

[[ARCT [28] | HFA[8] | GFK[23] | MMDT [17] | ASVM [10] | PMT-SVM [18] | ASSVM | MIX-55VM | DW-SSVM | COSS-S5VM |
[495+%06 | 474-08 ] 510£07 | 520+ 00 | 480Ff 11 | 489Ff 11 | 529E£07 ] 501+£06 | 53.2L£06 | 538L09 |

TABLE III. T HE AVERAGE MULTI-CATEGORY RECOGNITION ACCURACY ON ALL DOMAIN SPLITS(y = 0.9).
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Fig. 1. The multi-category classification accuracy of COS3/M with different~ value. The figure on the right shows the mean accuracy of aflado splits.

different domains as in [29]. Moreover, other recent stdte-
the-art methods will be also included in our comparisem

[29])
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. We let all these as future work.
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