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Abstract—Domain adaptation addresses the problem of ac-
curacy drop that a classifier may suffer when the training
data (source domain) and the testing data (target domain) are
drawn from different distributions. In this work, we focus o n
domain adaptation for structured SVM (SSVM). We propose
a cost-sensitive domain adaptation method for SSVM, namely
COSS-SSVM. In particular, during the re-training of an adapted
classifier based on target and source data, the idea that we explore
consists in introducing a non-zero cost even for correctly classified
source domain samples. Eventually, we aim to learn a more target-
oriented classifier by not rewarding (zero loss) properly classified
source-domain training samples. We assess the effectiveness of
COSS-SSVM on multi-category object recognition.

I. I NTRODUCTION

Large amounts of visual data are being generated daily
and made available in many domains, for example, images
uploaded by internet users. However, the lack of semantic
labels for these images makes difficult their use for computer
vision applications that rely on learned classifiers. In these
situations, it is reasonable to apply a classifier trained with
existing labeled data to newly collected data. However, this
procedure commonly results in a significant drop of the
classifier’s accuracy. This is because the training data (source
domain) and the testing data (target domain) are drawn from
different probability distributions.

On the one hand, the straightforward solution consists in
reproducing for the target domain the effort already done
for the source domain,i.e., data acquisition and labeling,
and posterior training of the desired classifiers. However,this
may turn out in a waste of resources since labeling usually
involves tiresome manual work prone to errors, and collecting
new images is not always straightforward. On the other hand,
some domain adaptation methods can exploit existing source-
domain labeled data (e.g., Caltech256 [1], PASCAL2010 [2],
ImageNet [3]) to complement relatively few target-domain data
for obtaining new target-oriented classifiers. When the domain
adaptation requires that all the target-domain data is labeled, it
is calledsupervised, if this data is totally unlabeled the domain
adaptation is denoted asunsupervised, otherwise it is denoted
assemi-supervised.

The domain adaptation problem has received considerable
attention by machine learning researchers [4], [5], [6] andmost
recently by computer vision ones [7], [8], [9] and several
domain adaptation techniques have been developed within
both communities. In this work, we follow the supervised
domain adaptation setting and focus on multi-category object
recognition between domains [2], [3].

Training classifiers for multi-category object recognition
can be cast as a structured SVM (SSVM) problem. Compared
to other approaches such as the one-versus-all strategy, an
interesting advantage of SSVM is the possibility of introducing
(in a natural way) class-specific penalties during the training
of the classifiers. In fact, such classification setup is required
in many real-world applications where cost vary for differ-
ent types of misclassification errors. This type of learning
is denoted as cost-sensitive learning [15]. For example, in
medical diagnosis, misclassifying a cancer as non-cancer is
much more serious than misclassifying a non-cancer as cancer
since patients could lose their life because of the delay in
the correct diagnosis and treatment. Similarly, misclassifying
a spam message as a useful e-mail can be easily and quickly
corrected by the human receiver, while misclassifying a useful
e-mail as spam can be more risky if it actually contains
important information that requires quick attention.

There is an increasing literature on SVM-based domain
adaptation approaches [10], [11], [12], [13] that show very
good adaptation results for different vision applications. One
of the simplest strategies is to retrain a classifier with mixed
combination of source and target samples. Another popular
approach is the adaptive SVM (ASVM) [10], which learns a
perturbation of the source-domain decision classifier by using
target-domain training samples. The combination of sourceand
target samples may have limited adaptation ability since it
treats all the training samples equally,i.e. the misclassification
costs on source and target domain samples are regarded as
equally important. In this way, the final classifier may operate
on both domains but not being sufficiently discriminative in
the target domain. The weighted combination method treats
the source and target domains differently by setting different
hyper-parameters in the SVM loss term, which tends to per-
form better than the straightforward combination method [14].

Generally, most of the SVM-based domain adaptation
methods can be extended to SSVM. However, in this work,
we propose a new strategy based on the misclassification cost.
Similarly to the weighted combination method, our adaptation
process treats the source-domain samples differently than
the target-domain ones. In particular, during the re-training
(adaptation) of a classifier based on target and source data,
we explore the idea of introducing a non-zero cost even for
correctly classified source domain samples. If the classifier
makes a correct prediction to the label of a source-domain
sample, we regard it as risky, thus the loss in the objective
function is increased. However, this situation should be less
risky than making an incorrect prediction about the label of



either a source-domain sample or a target-domain one. In other
words, we aim to learn a more target-oriented classifier by
not rewarding (zero loss) properly classified source-domain
training samples.

In order to emphasize that our domain adaptation proposal
for SSVM is cost-sensitive, we call it COSS-SSVM. We assess
the effectiveness of COSS-SSVM by relying on publicly avail-
able object recognition benchmarks. Our experiments show
that COSS-SSVM achieves a recognition accuracy comparable
to the state-of-the-art methods.

The rest of the paper is organized as follows. In Sect. II
we confront COSS-SSVM to related previous works. In Sect.
III, COSS-SSVM is described in detail. Sect. IV shows the
obtained results in the context of visual object recognition.
Finally, Sect. V summarizes the main conclusion of our work.

II. RELATED WORK

Thedataset bias[16] that refers to the differences between
data distributions of train and test sets can hurt a variety
of vision tasks. Considering the different datasets as differ-
ent domains we can find strong connections between this
phenomenon and the domain adaptation problem. To address
the latter problem, there have been proposed a significant
amount of methods within the computer vision community,
which commonly are based on feature or model transformation
techniques.

Regarding feature-transformation approaches, recently
Hoffmanet al.[17] proposed a method to learn a feature trans-
formation and a classifier in a jointly fashion. Respect to model
transformation approaches during the last five years several
methods that adapt the parameters of discriminative classifiers,
commonly SVM, have been proposed. The Adaptive SVM
(ASVM) proposed by Yanget al.[10] is a remarkable work that
has been the motivation of consecutive successful approaches
like the Protective Model Transfer SVM (PMT-SVM) [18],
which adapts the SVM parameters between different domains
by adding a constrain in the regularization term that enforces
the target model to be close to the source one.

In contrast to the model parameter adaptation methods
which mainly relies on regularization term, other SVM-based
domain adaptation strategies make use of the loss term,e.g.
weighted combination of both domain samples (WDSVM)
[14], [12]. The WDSVM method weights the loss function
values differently for the source and target examples by
using two distinct SVM hyperparametersCS andCT . Cost-
sensitive learning as a type of learning that takes into account
different misclassification costs has been used in many real-
world applications [15], [19], [20], while rarely exploredfor
domain adaptation. These techniques set different classification
costs to different samples during the learning. The final goal
is to minimize the total cost. By setting a higher cost to the
samples of some classes the learned classifier can improve
the performance for these classes. A typical application of
this learning is to solve the class imbalance problem [15].
Also, it can be also applied in multiclass problems [21]. An
interesting application for face recognition in control access is
proposed in [19]. In this case the cost of confusing an allowed
user with other is lower than confusing it with a non-allowed
one. These methods motivated us to set different costs to the

misclassification error for the source and target samples asa
way of improving the accuracy of the adapted classifier in the
target domain.

III. PROPOSEDMETHOD

In this work, we focus on SSVM based methods. Such
methods consist of a loss termL(w;D) that captures the error
with respect to the training dataD and a regularization term
R(w) that penalizes model complexity. We use SSVM for
cross-domain multi-category object recognition. For domain
adaptation, first we provide a straightforward extension ofthe
SVM-based domain adaptation methods to SSVM, including
the mixed (or weighted) combination of source and target
samples strategy and adaptive SVM. Similar to the weighted
combination method, we propose a cost-sensitive method,
COSS-SSVM, to take into account the differences of the source
and target domain samples.

In this work, we denote asDS
l the labeled source domain

and asDT
l the labeled target domain. The vector concatenation

is represented asa = [b′, c′]′, wherea, b, and c are column
vectors, and the zero vector is denoted by0.

A. Structured SVM for multi-category classification

The simplest way to train a multi-category classifier is
the one-versus-all strategy, for instance, using SVM as base
classifier. However, recent works on object recognition also
show promising results when relying on SSVM [22], with
the advantage of admitting class-dependent misclassification
penalties during the training process. Accordingly, we use
SSVM as our base classifier. We study domain adaptation
approaches for this classifier, which are rarely explored com-
pared to the SVM-based method. We start by introducing the
formulation of the SSVM for multi-category classification.

Assume we are given an image set ofK object categories,
D = {(xi, yi)|yi ∈ {1, . . . ,K}}Ni=1

. A multi-class SVM solves
the optimization problem:

min
1

2
‖w‖2 + C

∑N

i=1
ξi

s.t., ∀i, k, ξi ≥ 0
w′

kφ(xi)− w′
yi
φ(xi) ≥ ∆(yi, k)− ξi,

(1)

whereφ(xi) is a feature vector of dimensiond, eachwk is
the weight vector of linear classifierk, w = [w′

1
, . . . ,w′

K ]′ ∈
R

Kd concatenates the weights for all classes.∆(yi, k) is the
loss function which measures a confusion cost associated with
predicting classk when the true label ofxi is yi. In this work,
we consider0-1 loss,i.e.∆(yi, k) = 0, if yi = k, otherwise1.
The multi-class classification problem is solvable by usinga
SSVM. For that,φ(x) in Eq.(1) is replaced byΦ(x, y), which
is a concatenation of the features of each class:

Φ(x, y) = [ψ1(x, y), . . . , ψK(x, y)]′,

ψk(x, y) =
{

φ(x), if y = k

0, otherwise.

(2)



B. Baseline 1: Mixture of source and target domain samples
(MIX-SSVM and DW-SSVM)

One of the most simplest ways for domain adaptation is
to train a classifier on the union of the source and target
domain samples, we denote this procedure by MIX-SSVM.
Another extension is to consider different weights for the
source- and target-domain samples,i.e. domain weighted SVM
(DWSVM) [14]. For SSVM, we can apply the domain weight
strategy and we denote it by DW-SSVM. Note that the MIX-
SSVM is the special case of DW-SSVM, where the source and
target domain weights are the same. We write the DW-SSVM
objective function as follows:

min
1

2
‖w‖2 + CT

∑NT

i=1
ξTi + CS

∑NS

j=1
ξSj

s.t., ∀i, j, y, ξSi , ξ
T
i ≥ 0

w′Φ(xi, yi)− w′Φ(xi, y) ≥ ∆(yi, y)− ξTi , xi ∈ DT
l

w′Φ(xj , yj)− w′Φ(xj , y) ≥ ∆(yj , y)− ξSj , xj ∈ DS
l .

(3)

MIX-SSVM corresponds to the case of equal hyperparameters
CS andCT . Following [14], [12], the values of these hyperpa-
rameters are selected by minimizing the cross validation error
on the target training set.

C. Baseline 2: Adaptive Structured SVM (ASSVM)

1) Adaptive SVM: ASVM is a model-transform-based
method, which adapts the model parameters from the source
DS

l to the target domainDT
l (l indicates labeled samples) by

minimizing the following objective function:

min
wT

1

2
‖wT − wS‖2 + CL(wT ;DT

l ), (4)

where the regularization term‖wT−wS‖2 constrains the target
modelwT to be close to the source onewS .

2) Adaptive Structured SVM (ASSVM):The extension of
ASVM to SSVM is straightforward. The loss termL(wT ;DT

l )
can be written by using the feature representation of Eq.(2)in
the structured SVM loss function. The objective function of
ASSVM is written as follows:

min
1

2
‖wT − wS‖2 + C

∑NT

i=1
ξi

s.t., ∀i, y, xi ∈ DT
l , ξi ≥ 0

w′Φ(xi, yi)− w′Φ(xi, y) ≥ ∆(yi, y)− ξi,

(5)

D. Cost-sensitive Structured SVM for Domain Adaptation
(COSS-SSVM)

Our proposed domain adaptation method is based on MIX-
SSVM. As it is shown in Eq.(3), the MIX-SSVM method
simply combines source and target samples but does not take
into the misclassification cost on different domains. Sincethe
labeled target training samples are generally much less than the
source samples, the final classifier can still be source-domain
oriented. We propose a cost-sensitive method which considers
different miss-classification cost for different domain samples.
Concretely, when the classifier correctly predicts the class label
for a target domain sample, the cost is0. However, if the
sample comes from the source domain, we still increase a soft
loss in the objective function. Since our goal is to minimizethe
training error in the target domain, correctly predicting asource
domain sample may confuse the target domain classifier. Using

this cost-sensitive approach, the final classifier is expected to
obtain higher accuracy in the target domain. Our cost-sensitive
objective function is defined as follows:

min
1

2
‖w‖2 + C

∑NT

i=1
ξTi + C

∑NS

j=1
ξSj

s.t., ∀i, j, y, ξSi , ξ
T
i ≥ 0

w′Φ(xi, yi)− w′Φ(xi, y) ≥ ∆T (yi, y)− ξTi , xi ∈ DT
l

w′Φ(xj , yj)− w′Φ(xj , y) ≥ ∆S(yj , y)− ξSj , xj ∈ DS
l .

(6)
For ∆T (yi, y), we use the same0-1 loss as in Eq.(1), while
for ∆S(yj , y), we define the following loss function:

∆S(yj , y) =

{

γ ∈ [0, 1], if yj = y,

1, otherwise,
(7)

whereγ is asoft loss for the source-domain correct predictions.
This means that even when the classifier correctly predicts the
label of a source-domain sample, since it may confuse the
target-domain classification, we treat it as alight misclassi-
fication. Thus, we increase the loss in the objective function
by γ ∈ [0, 1]. If γ = 0, we have the standard MIX-SSVM.
If γ = 1, correctly predicting the label of a source-domain
sample is treated with the same cost as incorrectly predicting
the label of any other sample,i.e. source and target domain
ones. In Sect. IV, we show the impact of choosing differentγ
values.

IV. EXPERIMENTAL RESULTS

In the following, we evaluate our approach on standard
multi-category object recognition datasets. We first compare
the SSVM with the one-versus-all linear SVM on multi-class
classification. The classifiers are trained with labeled source or
target domain samples without domain adaptation. Then, we
study the impact of the soft costγ in the proposed COSS-
SSVM. 1 We test on all the source-target domain splits with
different γ values. Finally, following the evaluation protocol
in [17], we compare the proposed method to MIX-ASSVM,
DW-SSVM, ASSVM as well as other state-of-the-art methods.

A. Dataset and Experiment Setting

Datasets: We use the benchmark domain adaptation
datasets calledOffice [7] and Caltech256 [1]. The Office
dataset is a collection of images from three different do-
mains:amazon, webcam, anddslr. Each domain contains31
categories of common office objects. Theamazondomain
is a collection of product images from amazon.com. The
webcamand dslr contain images taken by a webcam and a
dslr camera, respectively. TheCaltech256dataset contains256
object categories from a single domain. We use the10 common
categories shared by the theCaltech256and Office for our
experiments.

Image representation: We use the image representation
provided by [23] (SURF bag of words image features with a
dictionary of 800 words). Following [23], we apply PCA to
the source and target data and use20-dimensional features in
all the experiments.

1We will make the source code available.



Experiment setup: We follow the setup of [7], [23] and
[17]. This means that we use20 training examples per category
for amazonsource and8 for all other source domains and3
labeled examples per category for each target domain. We use
the same20 random train/test splits available from [17] for
reporting the average performance.

B. Multi-category Classification Accuracy of SSVM classifier

Before performing the domain adaptation, we investigate
the performances of our base classifiers:

SRC: trained with only the source domain samples.

TAR: trained with only target domain samples.

We compare our SSVM multi-class classifier to theclassic
one-versus-all classifier. Table I shows the detailed comparison
on each source-target domain pair. For the one-versus-all linear
SVM, we tested three different solvers: Liblinear [24], Vlfeat
Pegaso [25] and Mosek QP solver [26]. Our SSVM solver is
implemented based on the LBFGS optimization toolbox [27].
The hyperparameterC of each SVM is first tuned by cross-
validation according to the mean accuracy on all target dataset,
then we fix the value for all the experiments. The results show
that our SSVM classifier constantly outperforms one-versus-
all methods. Accordingly, based on this SSVM base classifier,
we implement our domain adaptation algorithms.

C. The Impact ofγ in the COSS-SSVM Domain Adaptation

In this section, we evaluate the domain adaptation of
the COSS-SSVM under differentγ values. Fig.1 shows the
classification accuracy on each source-target domain pair.We
testedγ from 0 to 1 with a step of0.1. Whenγ = 0, which
is equal to the MIX-SSVM training, the domain adaptation
has the lowest accuracy on all testing pairs. Asγ increases,
the accuracy of the adapted classifier constantly improves.
However, whenγ reaches1, most of the adapted classifiers
become worse, except the ones onA→W , W → A, C →W
and C → D. The figure on the right hand side draws the
overall accuracy on all domain splits. It shows clearly thatthe
domain adaptation reaches maximum accuracy atγ = 0.9. This
experiment proves our assumption that correctly predicting the
label of source domain samples should be taken into account
as a missclassification cost. Accordingly, we fixγ = 0.9 in
the following experiments.

D. Comparison with more Baselines

In this section, we compare COSS-SSVM with multiple
baselines. As we follow the same setting of Hoffman:2013,
we make use of the available evaluation protocol as well as
some available baseline results.

ASVM: Adaptive SVM [10].

PMT-SVM: Projective model transfer SVM [18].

ASVM and PMT-SVM are trained with only the target
domain samples and a pre-trained source model. We use the
implementation from [18] and use the MOSEK optimization
toolkit [26] in our experiments. The multi-category classifiers
are learned in a one-vs-all manner.

ARCT: A general feature transform method proposed in
[28], using both domain data. We compare with the results
available from [17].

HFK: A feature transform based method that learns a latent
common space between source and target as well as a common
space classifier [8]. We compare with the results available from
[17].

GFK: The geodesic flow kernel method [23], using all
source and target data (including testing data). We apply 1-
nearest neighbour classifier with the kernel as in [17].

MMDT: Max-margin domain transfer method of [17],
which learns a mapping from target domain to source domain
as well as a discriminative classifier trained with the mapped
target features and the source domain ones.

ASSVM, MIX-SSVMandDW-SSVM, see Sect. III.

ResultsThe multi-category accuracy for each domain split
is shown in Table II. Table III shows the average accuracy
of each algorithm on all domain splits. The recently pro-
posed method [17] reported state-of-the-art results and our
COSS-SSVM achieves comparable accuracy on all domain
splits, being slightly better on the average accuracy. Our
ASSVMimplementation also reaches the same performances
as MMDT, showing promising performance of SSVM-based
domain adaptation methods. Compared to MIX-SSVM, our
COSS-SSVM shows a significant improvement for all domain
splits. In fact, the MIX-SSVM is the special case of COSS-
SSVM characterized byγ = 0.

E. Discussion

The proposed COSS-SSVM method is a simple while
effective strategy of domain adaptation. In this work we simply
fix γ for all the source domain samples, but considering
instance level cost-sensitive learning and using a dynamiccost
may improve the accuracy resulting from domain adaptation.
Although our cost-sensitive approach is actually built on a
very simple mixed combination of different domain samples,
it could be complementary to other SVM-based domain adap-
tation methods.

V. CONCLUSIONS

In this paper, we present a simple but effective approach
to perform the task of adapting classifiers between different
domains. Our method is based on the assumption that correctly
predicting the label of a source domain sample could be
considered as a missclassification cost for a target domain
classifier. Thus we propose a cost-sensitive training strategy
to handle missclassification costs of source and target do-
main samples differently, what we denoted as cost-sensitive
structured SVM (COSS-SSVM). We apply this method to the
problem of multi-category object recognition between different
domains. Experiments on standard benchmarks demonstrate
the effectiveness of our approach by a significant improvement
to the cost-insensitive methodi.e. MIX-ASSVM and compa-
rable accuracy to other state-of-the-art methods. Finally, note
that our method can be also regarded as a complement to
other SVM-based domain adaptation methods. For instance we
could extend our method for unsupervised domain adaptation
exploiting the intrinsic compact structures of categoriesacross



A → W A → D A → C W → A W → D W → C

SRC (Liblinear) 39.7± 1.4 37.7± 1.0 38.4± 0.5 32.6± 1.0 64.2± 0.9 26.8± 0.6
SRC (Pegasos) 37.1± 1.3 34.5± 1.1 36.6± 0.3 35.9± 0.8 63.8± 1.2 28.4± 0.6

SRC (QP-Mosek) 36.9± 1.3 36.7± 1.1 37.9± 0.4 32.3± 1.0 62.8± 1.0 27.1± 0.5
SRC-SSVM 42.3± 0.8 38.4± 0.6 39.8± 0.3 39.2± 0.4 65.3± 0.7 33.7± 0.5

D → A D → W D → C C → A C → W C → D

SRC (Liblinear) 32.2± 0.7 70.8± 1.1 25.2± 0.4 37.0± 0.8 30.8± 1.5 32.0± 1.0
SRC (Pegasos) 34.3± 0.6 71.3± 0.7 27.9± 0.3 38.9± 1.0 29.9± 1.3 31.7± 1.3

SRC (QP-Mosek) 31.2± 0.9 69.4± 1.1 25.6± 0.5 38.3± 0.9 30.2± 1.3 30.1± 1.1
SRC-SSVM 35.4± 0.5 71.5± 0.7 29.8± 0.2 42.2± 0.7 37.0± 1.2 39.5± 1.1

A → W A → D A → C W → A W → D W → C

TAR (Liblinear) 57.1± 1.0 44.2± 0.9 26.5± 0.6 45.1± 1.2 47.9± 1.7 25.5± 0.8
TAR (Pegasos) 60.0± 0.8 47.0± 0.9 28.9± 0.8 46.3± 1.0 52.9± 1.6 27.0± 0.7

TAR (QP-Mosek) 64.7± 1.1 51.4± 1.1 30.8± 0.6 48.5± 1.1 54.0± 1.4 29.8± 1.0
TAR-SSVM 64.5± 0.9 52.1± 1.1 33.5± 0.8 50.5± 0.7 56.0± 1.0 31.3± 0.8

D → A D → W D → C C → A C → W C → D

TAR (Liblinear) 43.0± 1.0 56.4± 0.9 26.6± 0.7 44.4± 1.1 56.6± 1.0 44.5± 1.6
TAR (Pegasos) 44.9± 0.9 60.9± 1.0 28.4± 0.8 45.8± 1.1 58.2± 1.0 50.0± 1.4

TAR (QP-Mosek) 47.8± 1.0 63.1± 1.1 29.8± 0.8 49.5± 1.0 63.1± 1.2 52.6± 1.3
TAR-SSVM 49.4± 0.8 66.2± 0.9 33.2± 0.8 50.2± 0.9 63.4± 1.1 53.8± 1.2

TABLE I. M ULTI -CATEGORY RECOGNITION ACCURACY ON TARGET DOMAINS. THE DOMAIN NAMES ARE IN ABBREVIATIONS: A: amazon, W: webcam,
D: dslr, C: Caltech256

.

A → W A → D A → C W → A W → D W → C

SRC-SSVM 42.3± 0.8 38.4± 0.6 39.8± 0.3 39.2± 0.4 65.3± 0.7 33.7± 0.5
TAR-SSVM 64.5± 0.9 52.1± 1.1 33.5± 0.8 50.5± 0.7 56.0± 1.0 31.3± 0.8

ARCT 55.7± 0.9 50.2± 0.7 37.0± 0.4 43.4± 0.5 71.3± 0.8 31.9± 0.5
HFA 61.8± 1.1 52.7 ± 0.9 31.1± 0.6 45.9± 0.7 57.1± 1.0 29.4± 0.6
GFK 56.5± 0.8 45.3± 0.9 38.6± 0.4 45.8± 0.6 73.8± 0.7 32.6± 0.6

MMDT 65.1± 1.2 54.5± 1.0 39.7± 0.5 50.6± 0.8 62.5± 1.0 34.8± 0.8

ASVM 65.0± 1.0 51.6± 1.1 30.9± 0.6 48.6± 1.1 54.4± 1.5 29.8± 1.0
PMT-SVM 65.9± 1.0 52.6± 1.1 32.3± 0.6 49.0± 1.1 57.9± 1.6 30.4± 0.9

ASSVM 60.0± 0.9 49.7± 0.8 42.6± 0.5 49.5± 0.5 67.4± 0.7 37.3± 0.5

MIX-SSVM 51.9± 1.1 45.5± 0.5 41.9± 0.4 46.4± 0.4 68.2± 0.8 37.1± 0.4
DW-SSVM 55.9± 1.1 48.7± 0.6 44.5± 0.4 49.2± 0.4 72.0± 1.0 38.0± 0.5

COSS-SSVM 57.2± 1.1 48.8± 0.6 44.4± 0.4 50.3± 0.4 72.4± 1.1 37.8± 0.6

D → A D → W D → C C → A C → W C → D

SRC-SSVM 35.4± 0.5 71.5± 0.7 29.8± 0.2 42.2± 0.7 37.0± 1.2 39.5± 1.1
TAR-SSVM 49.4± 0.8 66.2± 0.9 33.2± 0.8 50.2± 0.9 63.4± 1.1 53.8± 1.2

ARCT 42.5± 0.5 78.3± 0.5 33.5± 0.4 44.1± 0.6 55.9± 1.0 50.6± 0.8
HFA 45.8± 0.9 62.1± 0.7 31.0± 0.5 45.5± 0.9 60.5± 0.9 51.9± 1.1
GFK 45.8± 0.4 80.3± 0.7 33.3± 0.5 46.4± 0.7 61.0± 1.4 52.7± 1.2

MMDT 50.4± 0.7 74.2± 0.7 35.7± 0.7 51.1± 0.7 62.9± 1.1 53.0± 1.0

ASVM 48.0± 1.1 63.5± 1.1 29.9± 0.8 49.5± 1.0 63.2± 1.2 52.7± 1.3
PMT-SVM 48.6± 1.1 66.5± 1.2 30.9± 0.8 50.0± 1.0 64.3± 1.2 52.2± 1.3

ASSVM 48.6± 0.5 74.6± 0.6 35.5± 0.5 53.4± 0.7 63.6± 1.2 52.7± 1.0

MIX-SSVM 45.8± 0.4 74.9± 0.5 33.8± 0.4 50.7± 0.6 55.3± 1.0 49.4± 0.9
DW-SSVM 49.2± 0.4 80.1± 0.5 36.4± 0.4 53.3± 0.5 59.5± 1.1 51.4± 0.8

COSS-SSVM 51.0± 0.4 80.8± 0.5 36.9± 0.6 53.5± 0.5 60.4± 1.1 51.9± 0.1

TABLE II. M ULTI -CATEGORY RECOGNITION ACCURACY ON TARGET DOMAINS(γ = 0.9). BOLD INDICATES THE BEST RESULT FOR EACH DOMAIN

SPLIT. UNDERLINE INDICATES THE SECOND BEST RESULT. THE DOMAIN NAMES ARE IN ABBREVIATIONS: A: amazon, W: webcam, D: dslr, C: Caltech256

.

ARCT [28] HFA [8] GFK [23] MMDT [17] ASVM [10] PMT-SVM [18] ASSVM MIX-SSVM DW-SSVM COSS-SSVM

49.5± 0.6 47.4± 0.8 51.0± 0.7 52.9± 0.9 48.9± 1.1 48.9± 1.1 52.9± 0.7 50.1± 0.6 53.2± 0.6 53.8± 0.9

TABLE III. T HE AVERAGE MULTI -CATEGORY RECOGNITION ACCURACY ON ALL DOMAIN SPLITS(γ = 0.9).
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Fig. 1. The multi-category classification accuracy of COSS-SSVM with differentγ value. The figure on the right shows the mean accuracy of all domain splits.

different domains as in [29]. Moreover, other recent state-of-
the-art methods will be also included in our comparison (e.g.,
[29]). We let all these as future work.
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