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Abstract

In object-class segmentation, one of the most tedious
tasks is to manually segment many object examples
in order to learn a model of the object category. Yet,
there has been little research on reducing the degree
of manual annotation for object-class segmentation.
In this work we explore alternative strategies which
do not require full manual segmentation of the object
in the training set. In particular, we study the use
of bounding boxes as a coarser and much cheaper
form of segmentation and we perform a comparative
study of several Multiple-Instance Learning techniques
that allow to obtain a model with this type of weak
annotation. We show that some of these methods can
be competitive, when used with coarse segmentations,
with methods that require full manual segmentation
of the objects. Furthermore, we show how to use
active learning combined with this weakly supervised
strategy. As we see, this strategy permits to reduce
the amount of annotation and optimize the number of
examples that require full manual segmentation in the
training set.

1. Introduction

In the object-class segmentation problem, the ob-
jective is to automatically segment out of the image
instances of some object category, such as for exam-
ple instances of cars in images. Current techniques
for solving this problem are based on introducing a
training set of object examples carefully segmented by
hand, so that the system can learn an appearance model
of the object category [1]–[5]. For this purpose, a user
must delineate carefully the contour of every object
example in the training set (fig. 1(a)), which usually
takes several minutes per image. This high cost makes
it impractical to introduce a large number of object
examples to the system, which lowers the quality of the
learned model, and also reduces the scalability in terms

of the number of object classes that can be learned for
segmentation.

In this work we analyze coarser forms of segmen-
tation that are not completely accurate but allow us
to save time per annotated image. This saving of time
per image allows us to annotate more images spending
the same total amount of time, which might eventually
lead to obtaining more accurate models of our object.
In particular, we study the use of bounding boxes as
coarse form of segmentation (fig. 1(b)), which is much
faster than an accurate delineation of the contour. The
problem with coarse segmentations (such as bounding
boxes) is that some pixels inside one bounding box
belong to the background. In other words, a bounding
box will contain positive pixels (located onto the ob-
ject) and negative pixels (located onto the background),
and we ignore a priori what are the positive ones.

In order to learn a model with this type of loosely
annotated data, we explore the use of Multiple Instance
Learning (MIL) techniques [6]–[8] in our setting. This
type of approaches try to automatically identify the
relevant data (i.e., the positive pixels in our problem)
and learn a model based on it. In this work, we perform
a comparative analysis of three different MIL algo-
rithms applied to object-class segmentation. In addition
to this comparative analysis, we study whether or not
using the proposed bounding box delineation together
with MIL techniques and a high number of delineated
examples (thanks to the reduction in cost per example)
it is possible to equal or improve a full, accurate
segmentation of the object. Finally, after learning a first
model based on bounding box delineation and MIL, we
study the use of Active Learning [9] for improving the
initial model. Active Learning allows to automatically
select the most interesting examples to be manually
annotated (in our case examples that are to be fully
segmented by hand) based on an initial model.

The proposed intermediate-level, coarse segmenta-
tion, and the analysis of its performance compared with
full segmentation is novel and has not been performed



until now. In addition, there has not been any previous
comparative analysis of different MIL paradigms for
object-class segmentation, which is also a contribution
of our work, and finally the use of Active Learning for
optimizing the examples to be manually segmented is
also novel and represents the third contribution of our
work.

Related works in the literature are those of Pantofaru
et al. [10] and Verbeek and Triggs [11], who also use
MIL algorithms for object-class segmentation. They
do not use bounding boxes as intermediate-level seg-
mentation, and they just use the whole image without
any type of indication of segmentation. Using the
whole image works well for databases where the object
occupies a big area of the image, but leads to very poor
results in more difficult and realistic databases such as
VOC where the object might occupy a tiny area of
the image. In their works, the authors use generative
MIL algorithms and do not compare against other
alternatives. In our work, we perform a comparative
analysis between different MIL algorithms applied to
object-class segmentation. We do not only use gener-
ative approaches such as those of [10], [11], but also
include discriminative approaches such as the Wrapper
method described in the MIL literature [8]. As we
observe in the results, using a discriminative type of
algorithm leads to significantly better performance than
the generative ones proposed in [10], [11].

In the following, we first describe the components of
the proposed framework in section 2, we then explain
the MIL algorithms studied in this work in section 3
and the Active Learning algorithm in section 4. Sec-
tion 5 describes the results and comparative analysis
and finally we conclude in section 6.

(a) (b)

Figure 1. (a) Full segmentation of the horse in
one image, consisting of the silhouette of the horse
manually delineated in red. (b) Coarse segmenta-
tion of the same image using a bounding box, also
in red.

2. Components of the system

In this section we briefly describe the components
of our system. They comprise the extraction of visual

descriptors from the images, for describing the appear-
ance of the object to be learned; and the learning algo-
rithm, for obtaining a model of the typical appearance
of the object. Let us describe each of module in turn.

2.1. Extraction of visual descriptors

Given a training set of images, the user delineates a
bounding box for each example of the target object
category. Each bounding box defines a rectangular
region that is a sub-image Ii containing the object. We
call such sub-image a positive example. The system
then samples counter-examples (also called negative
examples) which are rectangular regions of similar size
and which are located close to each positive image
without overlapping it.

For each of these examples Ii (both positive and
negative), the system extracts a visual representation.
In our case we used a similar representation to the one
employed in [12]. First, the system performs a basic
region segmentation that permits to obtain so-called
super-pixels. Each super-pixel is a group of neighbor-
ing pixels with similar color and texture. In our case,
we use the algorithm described in [13], which is based
on K-means clustering on top of low-level features
such as LUV color and Daubechies wavelets, and we
set the parameters so as to obtain over-segmentation,
in order to avoid regions crossing the boundaries of
the object. Once these regions (or super-pixels) are
obtained, we extract a feature vector representing each
region. For this purpose, Pantofaru et al. [12] propose
to use a Bag-of-Words (BoW) histogram of the region.
In our case we use Distance-based Bag-of-Words (D-
BoW) described in [14], which is similar descriptor to
BoW but was seen to provide slightly better results1.

At the end of this process we have, for each
sub-image Ii, a set of feature vectors Bi =
{~x(i)

1 , ~x
(i)
2 , . . . , ~x

(i)
N }, where the j-th feature vector ~x

(i)
j

is a D-BoW descriptor that describes the j-th super-
pixel of the image Ii. The set of feature vectors Bi

associated with the sub-image Ii is called a bag in the
MIL literature. In the rest of the discussion, we will
use the words sub-image and bag interchangeably. A
sub-image or bag is composed of a set of super-pixels
described by the feature vectors ~x

(i)
j .

1. In order to obtain both BoW and D-BoW descriptors we
need first to quantize the low-level features of each pixel. In this
preliminary work we use the same LUV color and wavelets used
for region segmentation. We can expect to obtain better results if
more complex features such as SIFT [15] are used instead, but we
let this for future work.



2.2. Learning module

From the previous step, we have a training set of
positive and negative sub-images. Positive sub-images
(i.e., those containing an example of the object class)
will contain positive super-pixels, which are the ones
located on the object. Negative sub-images, on the
other side, will contain negative super-pixels belonging
to the background. Based on this training set we can
learn a model Θ = {θ1, . . . , θM} of the positive super-
pixels, where M is the number of parameters of the
model. This model is then used by a classification func-
tion fΘ(~x) ∈ [0, 1] that provides the likelihood that the
feature vector ~x corresponds to a positive super-pixel
belonging to the object of interest. This function can
then be used in order to obtain a likelihood map of
the object given a new image, and we can segment the
object out of the image by using some threshold on
the likelihood.

Together with the classification function fΘ(~x),
there is usually a post-processing spatial regularization
process that forces the likelihood of neighboring super-
pixels to be similar. This is usually carried out by
different types of graphical models, mostly Markov
Random Fields (MRF) and Conditional Random Fields
(CRF), see [10] for an example, as they use a frame-
work similar to ours. In this preliminary work we have
not applied any spatial regularization post-processing,
and we let this for future work. Note, however, that
this post-processing just refines the quality of the
classification function fΘ. In other words, if we have
two classification functions and the first one is better
than the second, then the regularization step will not
change this fact, so that the first classification function
will continue to be better after regularization. In this
work we concentrate on studying the performance of
different classification functions fΘ(~x), some obtained
with low human effort (coarse manual segmentation)
and some with high effort (full manual segmentation).

Note that, if we apply full manual segmentation to
the examples of the training set, then we are sure that
all the super-pixels of every positive example will be
positive, i.e., they will belong to the object of interest,
while all the super-pixels of the negative examples
will be negative and will belong to parts of back-
ground stuff. In this scenario we can apply standard
machine learning algorithms such as Boosting [16] and
SVM [17] in order to obtain an appearance model Θ
of the positive super-pixels.

On the contrary, when we apply coarser segmen-
tations such as bounding box delineation, then a
positive sub-image will contain both positive super-
pixels belonging to the object and negative super-

pixels belonging to the background (see fig. 2), and
we do not know what are the positive ones. The
only thing we know is that the negative sub-images,
i.e., those sub-images containing background, contain
only negative super-pixels. In order to learn with this
partially-labelled data, we can use Multiple Instance
Learning techniques [6]–[8], which first try to identify
the positive super-pixels in the training set, and then
learn a classification function fΘ(~x) that distinguishes
between positive and negative super-pixels.

3. Multiple-Instance Learning algorithms

In this work we have evaluated three different MIL
algorithms: the generative approaches used by Panto-
faru et al. in [10] and Verbeek and Triggs in [11], and
the discriminative approach proposed in [18]. The first
two approaches have been used for object-class seg-
mentation by their respective authors, while the third
one has not been used for object-class segmentation
until now. Let us explain the idea of each of them, we
do not enter into technical details due to lack of space.

In [10], the idea is to group the super-pixels into
several clusters Ci, and identify those clusters with
a higher proportion of positive super-pixels. For this
purpose, all the super-pixels from all the sub-images
are pooled together into one big set S, and an unsuper-
vised clustering algorithm such as K-means is used to
partition S into M clusters C1, . . . , CM , where M is a
parameter of the system. Then, for the i-th cluster Ci

we count the number Np of super-pixels that originally
come from a positive sub-image and the number Nn

of super-pixels that come from negative sub-images.
The higher the ratio of Np versus Nn, the higher the
likelihood that a super-pixel in Ci will be positive.
Based on this idea, the authors define a so-called
relevance function R(Ci) that provides the likelihood
that the super-pixels in Ci are positive (see [10] for
technical details). Given a new image containing the
object of interest, this object can be segmented by
taking those super-pixels of the image that have a high
relevance, i.e., those super-pixels that fall into a cluster
Ci where R(Ci) is high.

In [11], the authors propose to use the Proba-
bilistic Latent Semantic Analysis (PLSA) technique
introduced in [19]. This technique originally comes
from the information retrieval field, where it is applied
for classifying documents according to their content.
The idea is to discover the probability Pr(z|d) that
the topic z describes the content of the document
d. This probability is determined according to the
words existing in the document, where some words
will be more related to the topic z than others. In



order to obtain this probability, Hofmann [19] pro-
poses to use an Expectation-Maximization algorithm
that iteratively computes the following probabilities:
Pr(zk|di, wj), P r(zk|di) and Pr(wj |zk). Here, zk is
the k−th topic, di is the i-th document of the training
set and wj is the j-th word of the vocabulary. In the Ex-
pectation step, the algorithm computes Pr(zk|di, wj),
i.e., the probability of having the topic zk given that we
have the document di and there is the word wj in this
document. This probability is determined according to
the probabilities Pr(zk|di) and Pr(wj |zk) which are
computed in the Maximization step of the algorithm.

When applying the PLSA technique for object class
segmentation, the images play the role of documents,
the super-pixels of the images play the role of words,
and the topics play the role of object-classes that might
be found inside the image (here the background is
considered another class of object). Given a super-pixel
(word) wj found in the current image (document) dj ,
we want to determine the probability that this super-
pixel belongs to the object-class (topic) zk, i.e., we
want to determine Pr(zk|di, wj), which is obtained
in the Maximization step of the PLSA algorithm as
explained above. Although the original algorithm was
completely unsupervised, Verbeek and Triggs [11]
propose to introduce some sort of supervision by
forcing the probabilities Pr(zk|di) to be zero for those
object-classes zk that are not present in the image di

of the training set. A final detail is that the super-
pixels Sj of the image are described by real-valued
feature vectors ~xj , while the words wj of the PLSA
algorithm take discrete values {1, . . . ,W}. Therefore,
we must first quantize the feature vectors into discrete
values {1, . . . ,W}. This is usually done by clustering
algorithms such as K-means, as in [11].

As a third MIL technique, we studied the use of the
Wrapper method proposed by Frank and Xu in [18],
which has not been used in object-class segmentation
until now. Contrary to the other two methods, the
Wrapper is based on standard discriminative classifiers
such as Boosting [16] and SVM [17], which have
been shown to be among the most powerful classifiers.
Traditionally, standard classifiers have not been applied
in Multiple-Instance Learning problems because they
require that every feature vector of the training set has
an associated label (positive or negative in the case of
binary object-class segmentation). In the case of MIL
problems, however, we only know the label of each bag
Bi (corresponding to sub-image Ii, see section 2.1).
We know that bags Bi corresponding to sub-images
that contain the object of interest have a positive label
while bags corresponding to sub-images that do not
contain the object have a negative label. However, we

ignore the particular label (positive or negative) of the
feature vectors ~x

(i)
j ∈ Bi belonging to the bags. In

order to solve this problem, Frank and Xu propose to
simply assign the label of the bag to each feature vector
contained in it. As a result, we obtain a fully labelled
training set of feature vectors, and we can use standard
and powerful classifiers such as Boosting and SVM.

Frank and Xu [18] argue that this strategy works
well if we weight every feature vector appropriately.
The idea is that the sum of the weights of the feature
vectors inside one bag is constant for all the bags.
This is done by assigning to the feature vector ~x

(i)
k ,

belonging to bag Bi, the weight 1
|Bi| , where |Bi|

denotes the number of feature vectors belonging to the
bag Bi. Using this weighting scheme, we are giving
the same importance to every bag of the training set,
i.e., to every object example of the category we want
to learn. In this work we apply the Wrapper method
together with the Boosting classifier [16] (in particular,
we use the Gentle Boost version proposed in [20]).
Boosting is, together with SVM, one of the most
powerful classifiers existing in the current literature,
and it is more appropriate than SVM in cases where
the training set is very large (in the order of hundreds
of thousands of feature vectors), as applying SVM is
infeasible in these cases due to its computational cost.

4. Active Learning

The idea of Active Learning is to use an initial
model in order to carefully select the most inter-
esting examples to be labelled by the human user
in the learning process. In our case, we study the
use of Active Learning for object-class segmentation
as follows. In an initial step, the user performs a
coarse manual segmentation of all the object examples
by using bounding box delineation. With this coarse
segmentation we can learn an initial model by means
of the MIL algorithms described before. Based on this
initial model, we can use techniques based on Active
Learning in order to select the most interesting object
examples that can undergo full manual segmentation.
The user is asked to manually segment the examples
selected by Active Learning, and a new, refined model
is learned based on these examples together with the
ones used before with coarse segmentation.

Active Learning is usually based on examining
which examples are close to the decision boundary of
the initial classifier. Those examples are the ones on
which the belief of the classifier is weaker, i.e., where
the classifier has more doubts and where we need the
input of the human user to determine their real label
(positive or negative).



In our case, the trained classifier fΘ(~x) ∈ [0, 1] is
applied over feature vectors ~x corresponding to super-
pixels (see section 2.2). Therefore, if we apply a stan-
dard Active Learning strategy, the system would select
those super-pixels lying on the decision boundary of
fΘ, i.e., those super-pixels whose feature vector ~x
receives a score fΘ(~x) close to 0.5. The system would
then present these super-pixels to the user so that he
or she would be able to label them as belonging or
not to the object of interest. This would lead to an
impractical interactive system, as there are thousands
of super-pixels and we would need a high number of
iterations with the user.

Instead of selecting interesting super-pixels, we
would like to select interesting sub-images where the
object can be manually segmented. For this purpose,
we define a score S(Ii) for each sub-image Ii as
follows:

S(Ii) =
∑

~x∈Ii

exp
(
− (fΘ(~x)− 0.5)2

σ2

)
,

where the value of the parameter σ was set heuristi-
cally to 0.5, which provided good results in practice.
This score is higher for those sub-images containing
a large number of super-pixels close to the boundary
0.5.

Figure 2. Positive sub-image containing both pos-
itive and negative super-pixels. One super-pixel is
a region of contiguous pixels with similar color and
texture.

5. Experimental analysis

For conducting our experiments, we used one of the
most popular and difficult databases in the Object-class
segmentation literature, the PASCAL Visual Object
Classes (VOC) database [21] from the last edition.
The complete database contains twenty categories,
but not all of them are always used in the works.
In this preliminary work, we used six categories of
different nature: animals (horse, sheep, cow, cat) and
man-made objects (bus, car). The VOC database pro-
vides, for each category, a small number of manual
segmentations. Because this number is actually very
small, we fused the VOC 2010 database [21] (which

Horse Sheep Cow Cat Bus Car
Training
(Positive 936 1005 746 1336 659 3233
examples,

non-segmented)
Test 99 146 118 162 114 197

Table 1. Number of images used for training and
testing in each category

corresponds to the last edition) with the VOC 2007
database [22] (which corresponds to the first edition
for the object-class segmentation task). In order to
build our training sets, we took the images that were
not manually segmented (only bounding boxes are
provided for those images). For the test set, we took
the images which were manually segmented, as we
need the manual segmentation for our ground-truth.
The statistics of the resulting training and test sets
are listed in table 1. For each category, we took as
negative examples windows randomly sampled from
the background of each positive image, in such a
way that the window is close to the bounding box
delineated by the user but without overlapping it. The
idea is to make the negative examples come from the
background of the object, so that the system can be
trained to differentiate between foreground (object) and
background. For each positive image the number of
sampled negative windows were twice the number of
positive object examples contained in the image.

In table 2 we show the results for the different
MIL methods of section 3, using the area under the
precision-recall curve as a standard measure of perfor-
mance [21]. These results were obtained restricting the
test images to be the bounding boxes of the positive
object. Note that the important thing here was to com-
pare the performance between the different methods.
Restricting the test image to be the bounding box of
the object just decreases the amount of background,
but does not change the relative performance of the
methods. Also the differences between the methods
remains very similar. We show here the performance
with bounding box restriction just to focus on the
relative performance of the methods. In the last row
we show the performance that we would obtain with
a random segmentation. This performance is around
50% for most of the categories, which means that the
object occupies approximately 50% of the area of the
bounding box in the test example, except for the bus
and car categories, which consist of more rectangular
objects, so that the object fits better the bounding box
and occupies more than 50% of its area. Examples
of segmentation results obtained with the Wrapper



Method / Horse Sheep Cow Cat Bus Car
Database

Wrapper [18] 71.1 72.5 77.1 68.5 86.1 76.6
Relevance 63.6 67.2 73.4 70.5 85.8 73.1

of clusters [10]
PLSA [11] 50.1 64.0 65.4 60.0 77.2 66.2

Random 46.7 57.7 58.3 56.5 76.2 65.2

Table 2. Results of the MIL methods.

method are shown in fig. 3 for some categories (horse,
cow and car), just as an illustration.

For the Wrapper method, we found empirically that
a uniform weighting scheme is indeed superior for
our segmentation problem when we use Gentle Boost.
Also, we tested other Boosting variants such as the
AdaBoost version in [23], but Gentle Boost consis-
tently provided better results. Therefore, the scores
showed in table 2 for the Wrapper method are based
on Gentle Boost and uniform weighting. As we can
see, the Wrapper method significantly outperforms the
other MIL methods in all but one category (cat),
where the method of [10] is superior. Compared to
the PLSA method, PLSA gets results just slightly
better than random chance, and the other two MIL
methods are clearly superior in all the categories.
Our implementation of PLSA obtained good results
on a different database, which is the MSRC database
used by the original authors of this method [11],
where we obtained a similar score (52%) as the one
reported in [11] when the SIFT feature vector is used
(random chance obtains around 10% of accuracy on
that database). The MSRC database provides a very
rich annotation of every image, in such a way that
all the objects appearing in the image are labelled.
The PLSA method considers the co-existence of the
different objects in the image, in the sense that, for
example, it is more probable to find a cow in an image
if there is grass and it is more probable to find a
car if there is a road, etc2 The use of this contextual
information (interaction between the different objects)
makes it more appropriate to use the PLSA method in
fully labelled databases such as the MSRC. However,
indicating all the objects that appear in the image is a
cumbersome task and becomes infeasible for complex
and realistic images. In this work we want to reduce
the amount of manual labelling required, i.e., we focus
on the case where only one target object of interest (or
just a few) is indicated in the image, as is the case of

2. This is why PLSA is successful in classification of textual
documents [19], where the topics arise from the combination of
different words in the same document, which in the case of images
translates to the combination of different types of super-pixels in the
same image

the VOC database.
If fig. 3 we show a few segmentation examples using

the Wrapper method, i.e., with a training set that only
usees bounding boxes as input, just for illustration
purposes. The images were obtained by thresholding
the likelihood obtained with Gentle Boost on every
super-pixel. We used as threshold the one that achieves
an equal error rate of the ROC curve, as done in [10].

Figure 3. Segmentation examples

In fig. 4 we compare the performance of a full seg-
mentation approach, which uses standard supervised
learning, against the one based on coarse segmentation
(bounding boxes), which uses multiple instance learn-
ing (we used the Wrapper method in this comparison).
We show for this purpose the precision-recall curve
obtained for both approaches. For the full segmentation
approach we used Gentle Boost [20] in order to obtain
a fair comparison. In order to fairly compare both
strategies, we measured the time spent in manually
segmenting the images with full segmentation (138.4
seconds per image, in average) and with bounding
boxes (3.4 seconds per image, in average). In order
to spend the same total amount of time for both
approaches, the coarse segmentation uses 936 images
while the full segmentation only uses 23 images. In
both cases the total manual segmentation cost was
about 53 minutes. As we can see in fig. 4, using
the Wrapper method together with a high number of
coarsely segmented images is advantageous over using
a expensive approach based on accurate manual seg-
mentation of a fewer number of images together with
a standard supervised algorithm. The curves shown
in fig. 4 correspond to the horse category, and we
obtained a similar behavior for other categories (not
shown for lack of space).

An important advantage of the proposed framework
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Figure 4. Precision-recall curve using bounding
boxes and MIL (solid blue line) versus full segmen-
tation and standard learning (dotted red line).

is the possibility of incorporating information from
fully segmented images in a more efficient way through
the use of Active Learning, as proposed in section 4. In
fig. 5 we show the performance of using the proposed
Active Learning strategy versus not using it. In the
Active Learning case, we learned an initial model
with a bounding box segmentation of 380 images, and
used this initial model to iteratively select the most
informative one hundred images that should be manu-
ally segmented by the user, as explained in section 4,
before learning an updated model based on these fully
segmented images. In the case of not using Active
Learning, the one hundred images to be segmented
are selected just randomly from the set of images. For
lack of space we only show the graphic for the horse
category, although a similar behavior is obtained for
other categories.
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Figure 5. Precision-recall curve using the pro-
posed active learning approach (solid blue line)
versus not using it (dotted red line) for the horse
category.

6. Conclusions

In this work we explored strategies that reduce and
optimize the cost of manual segmentation necessary in
object-class segmentation. For this purpose, we pro-
posed to combine a coarse type of segmentation of the

objects with an appropriate Multiple Instance Learning
(MIL) algorithm such as the Wrapper method [18],
which, as we showed here, provided the best results for
our object-class segmentation problem. As we showed
in the results, using the proposed strategy permits to
obtain a clearly better performance than using a full
manual segmentation coupled with a standard learning
algorithm. This is because a full manual segmentation
is very tedious and time consuming, which reduces the
number of segmented objects that can be introduced
to the learning system. In fact, we can see in standard
databases such as VOC [21] that the number of fully
segmented images is usually very small, in the order of
a few dozens per training set. 0n the contrary, using a
strategy based on coarse segmentation, with bounding
boxes, we can segment a significantly higher amount of
images spending the same amount of time. As we have
seen, this extra amount of information is efficiently
managed by a MIL algorithm such as the Wrapper
method, leading to higher performance than the one
obtained with full segmentation and a standard learning
algorithm.

In addition to this analysis, we showed in the results
that we can combine the proposed coarse segmentation
and MIL with a posterior Active Learning algorithm.
The coarse segmentation with MIL permits to learn an
initial model and the Active Learning step permits to
use this model in order to select the most informative
objects that should be fully segmented by the user.
For this purpose, we proposed in this paper a particular
form of Active Learning that can be applied for object-
class segmentation, and we saw in the results that it
permits to augment the accuracy.

Finally, in addition to the two previous contributions,
our work includes an important comparative analysis
of different MIL algorithms that can be applied to the
proposed framework. Two of these algorithms were
already applied in the context of object-class seg-
mentation, while the third one (the Wrapper method)
has not been applied until now. As the results show,
the Wrapper method provides a better performance in
general, which might be explained by the fact that
this method incorporates the advantages of powerful,
standard discriminative learning algorithms such as
SVM and Boosting, while the other two methods
proposed until now are based in part on generative
strategies which seems to be a less powerful approach.
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