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Abstract

We present a region matching algorithm which estab-
lishes correspondences between regions from two seg-
mented images. An abstract graph-based representa-
tion conceals the image in a hierarchical graph, exploit-
ing the scene properties at two levels. First, the similar-
ity and spatial consistency of the image semantic ob-
jects is encoded in a graph of commute times. Second,
the cluttered regions of the semantic objects are repre-
sented with a shape descriptor. Many-to-many match-
ing of regions is specially challenging due to the insta-
bility of the segmentation under slight image changes,
and we explicitly handle it through high order poten-
tials. We demonstrate the matching approach applied to
images of world famous buildings, captured under dif-
ferent conditions, showing the robustness of our method
to large variations in illumination and viewpoint.

1 Introduction

Image region matching has been widely used for ap-
plications such as 3D surface registration [13], object
retrieval [4] and place recognition [12]. The main chal-
lenge when matching image regions lies in encoding the
large variability in both appearance and arrangement
of regions obtained from natural images under chang-
ing conditions (viewpoint, illumination). The exist-
ing segmentation algorithms are often sensitive to small
changes, generating image regions with poor repetitiv-
ity in terms of shape and size, and fusing and dividing
regions inappropriately.

A common approach to tackling these variability
problems is the use of graph matching. Generally, the
graph nodes represent the features to be matched, while
the edges encode information about their spatial struc-
ture. Most graph matching methods establish geomet-

ric constraints on the image structure by preserving a
distance measure between nodes embedded in a Eu-
clidean space [8]. One major drawback of this approach
is its restriction to a near-isometric assignment, which
results in poor performance when there are large varia-
tions in the node arrangements. One way to overcome
this limitation is to rely on the statistical properties of
the graph. Commute times between graph nodes have
been recently used in computer vision applications to
characterize the layout of a graph, proving to be sta-
ble against structural variations of the scene. In [1, 9],
commute-times are successfully applied to describe the
structure of the image content.

Typically, only one-to-one correspondences are con-
sidered in graph-matching [7], which is a very re-
strictive assumption. A much less explored prob-
lem, called many-to-many matching, involves simulta-
neously matching multiple vertices in one graph to mul-
tiple vertices in the other. In the case of region matching
this is a critical issue, since the inconstant pattern of re-
gions generated by a segmentation algorithm produces
frequent region fusions and divisions.

Works like [3] have noted the convenience of com-
bining many-to-many matching with an abstract model
of the scene structure. Following this idea, we propose
a coarse-to-fine hierarchical representation that encodes
the image global structure in a loose manner using com-
mute times, while relying on local invariant features to
handle photometric changes of the image. The bottom
level of the hierarchy deals with many-to-many corre-
spondences by comparing subsets of region boundary
shapes.

The graph matching is modeled as a high-order dis-
crete energy minimization. Because solving such high-
order functions is a difficult problem with existing opti-
mization techniques, we propose very sparse high order
potentials which, as shown in [10], can be efficiently
optimized with standard message passing inference al-
gorithms.
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2 Hierarchical Region Matching

We address the problem of matching two instances of
the same object, which can undergo significant changes
in illumination, viewpoint, and scale. As a consequence
of these changes, regions in two different images that
correspond to the same object, when segmented, display
poor repetitivity. In addition, occlusions are frequent
and fusions and divisions of regions from one image to
the next may occur.

Our image representation contains information at
two levels of abstraction. The lower level or region-
graph contains image regions generated by a standard
segmentation algorithm such as mean-shift. The upper
level, or cluster-graph, groups regions into potential se-
mantic objects, with similar appearance and location.
While the cluster level encodes the layout of the seman-
tic components of the image, the region level improves
the correspondences by examining local features within
these components.

2.1 Region Layer

From each image we obtain a set of regions using a
standard segmentation algorithm (e.g mean-shift). We
define them as ri = (xyi, Ti, Hi) , where xyi denotes
the position of the region centroid, and Ti and Hi its
texture and hue descriptors respectively. In order to ex-
press the region layout, we define a distance between
regions as

Dr(ri, rj) = αf(xyi, xyj) + (1− α)g(Ti, Tj), (1)

where f is the Euclidean distance between region cen-
troids, g is the Euclidean distance between their texture
descriptors (e.g. local binary pattern), and α ∈ {0, 1}
is a weighting factor which adjusts the importance of
location or appearance in the graph structure. The local
region structure (graph adjacency matrix Ωr) is defined
by connecting nodes which are adjacent to each other in
the image, with weight Dr.

2.2 Cluster Layer: graph of commute times

We group the image regions with the LP-based sta-
bilities clustering method introduced in [5], using the
distance of equation (1) as the affinity matrix. Each of
the clusters acts as a node on the cluster-graph, compos-
ing a collapsed version of the region-graph. We define a
distance between clusters by averaging all region edge
weights between two clusters as

Dc(ci, cj) =
1

|ci||cj |
∑
rk∈ci

∑
rl∈cj

Ωr(rk, rl). (2)

The cluser-graph is a fully connected graph, and its ad-
jacency Ωc is given by the commute time matrix be-
tween clusters. As shown in [2], this can be computed
from the spectrum of the normalized Laplacian of the
distance matrix of Eq. (2).

3 Formulation
Let R1 and R2 be the sets of regions generated from

two images, I1 and I2 respectively. The set of all possi-
ble correspondences between the regions is denoted by
R = R1×R2. Analogously, letC1 andC2 represent the
sets of clusters of regions, and the set of all correspon-
dences between clusters as C = C1 × C2. A match-
ing configuration between two images is represented as
a binary vector of indicator variables x ∈ {0, 1}C∪R,
where x = 1 means that the corresponding matching
exists, and x = 0 otherwise. Our energy function is
defined as the weighted sum of 4 energy terms,

E = λcE
c + λrE

r + λctE
ct + λshapeE

shape, (3)

where the λ coefficients weight the influence of each of
the terms. The c and r terms refer to the appearance
cost on the cluster and region layer respectively. The ct
term favors a coherent cluster structure on pairs of clus-
ter associations, and the shape is a high order term with
two different roles: First, it encourages subsets of seg-
ments to match other subsets with similar shape, and
second, it communicates between both layers by con-
straining the clusters and segments that can be matched
simultaneously. Next, we develop the potential function
formulation for each of the terms.

3.1 Potential Functions

The term Ec encourages correspondences between
clusters with similar appearance, by assigning a cost to
match two clusters as the average distance between the
descriptors (color, texture) of the regions contained in
the clusters.

We denote the setN of pairs of associations involved
in a fusion or division as every pair xa = (ci, cj), xb =
(ck, cl) such that ci = ck ∨ cj = cl. The set M con-
tains the remaining pairs of cluster associations xc =
(ci, cj), xd = (ck, cl) such that ci 6= ck ∧ cj 6= cl.
Then, the term Ect is defined as

Ect(x) =
∑

xa,xb∈N

θfdab xaxb +
∑

xc,xd∈M

θctcdxcxd (4)

The first cost θfd encourages fusions or divisions
among clusters that are very close to each other, in terms
of centroid distances and appearance. The θct penalizes

2665



xc xc

Ci

Cj

(a) (b)

Figure 1. In (a) left, an example of High Order clique (xc). In (a) center, all possible associations within the clique. In (a)
right, a low cost clique realization. In (b), an example of sub-graph matching of region boundaries. Best Viewed in color.

pairs of associations with dissimilar commute time dis-
tances between the source and destination cluster graph
edges. The energy term Er is a unary measure of ap-
pearance compatibility between image regions.We have
adapted the self-similarity descriptor introduced in [11]
to describe the compatibility between two regions. Fi-
nally, the high order potential Eshape binds both graph
layers by constraining the cluster and region correspon-
dences that should not be active simultaneously. It
also models the compatibility of many-to-many region
matching by defining a shape similarity between sub-
sets of regions. We describe it in detail in the next sec-
tion.

3.2 High Order Potential

For every cluster association xc = (ci, cj) ∈ C, we
generate a high order clique xij , composed of all region
correspondences within the two clusters ci and cj , and
the cluster correspondence itself xc. Let Z be the set
of all high-order cliques. The high order energy term is
defined as

Eshape(x) =
∑

xij∈Z

Ψ(xij). (5)

The optimization of the high order terms is a difficult
problem to solve [6]. In order to make the optimization
feasible it is very convenient to model potential func-
tions which are sufficiently sparse [10], so that only a
few configurations contribute with a low cost, while the
remaining configurations have a high constant penalty.
We can take advantage of our hierarchical model to
make our terms very sparse, and at the same time unify
the matching of both layers, by assigning large costs
to incompatible layer configurations. Given a clique
xij = {xc, xk, xl, ..., xn}, where xc is the cluster as-
sociation indicator variable, and xk, xl, ..., xn represent
the correspondences between the regions, we define the
high order potential as

Ψ(xij) =

 θ∞ if xc = 0 ∧
∑n

k xk > 0
θ0 if xc = 0 ∧

∑n
k xk = 0

s(xc) otherwise
(6)

The term θ∞ is a high penalty that forbids incoherent
inter-layer configurations. The term θ0 is a constant cost
when no region is matched in the clique. The function
s(xc) defines a cost for each compatible configuration
of region correspondences xc = xij − {xc}, within the
two clusters associated by the variable xc = 1. This is
shown in Figure 1 (a).

Let Gi be the set of all possible subgraphs of Ωr,
obtained by combining the regions rk, rl, ..., rn ∈ ci,
in p-tuples, from p = 1 to p = n. Each of these
combinations is then characterized by a shape descrip-
tor SC(gi), of the points in the boundary of the image
area defined by the subgraph combination gi ∈ Gi. See
Figure 1 (b).

Given a variable set xc = {xa, xb, ..., xn} related
to the cluster correspondence c = (ci, cj), and their
respective sets of combinations Gi, Gj , we define the
shape cost as

s(xc) = δ(SC(gi), SC(gj)) + ρ. (7)

The cost s is defined for every p-tuple gi =
{r1, ..., rp} ∈ Gi, and every q-tuple gj = {r′1, ..., r′q} ∈
Gj , with a = (r1, r

′
1), b = (r1, r

′
2), ..., n =

(rp, r
′
q). The function δ is a similarity measure be-

tween shapes (shape context). The term ρ is an extra
penalty for unmatched regions, defined as ρ = 1 −
(1/min(|ci|, |cj |)

∑
a∈xc xa).

4 Experiments and Results

We evaluate our method on pairs of images of world-
famous monuments downloaded from Flickr. The mon-
ument classes selected are: Eiffel Tower, Liberty Statue,
Notre Dame cathedral and Taj Mahal. Figure 2 shows
examples for each of the classes. The image dataset is
composed by 20 images per class. We consider a pair
of regions to be a correct correspondence if the regions
share a minimum of 50% of the common pixel area of
two objects. We compute the region mismatch error as
the ratio of failed correspondences to the total number
of correct region pairs.

To perform these experiments we set the energy
component weights to λc = 3, λr = 5, λct = 4.5 and

2666



Figure 2. Sample results of three pairs of images. Regions in each pair sharing the same color are in correspondence.
Areas in black are not matched. Best viewed in color.

Table 1. Error ratio and optimization avg. time.
mismatch error ratio Eiffel Liberty T.Mahal N.Damme

spectral pairwise [7] 0.34 0.45 0.51 0.35
ours pairwise 0.46 0.58 0.67 0.53
ours H.O 0.25 0.17 0.30 0.21

optimization time (seconds)

ours pairwise 11.2 04.8 17.9 23.5
ours H.O 02.3 00.8 06.1 05.9

λshape = 2.5. The cost θ0 is set to 1.25. Figure 2 shows
examples of region matching results.

Table 1 shows a comparison of the average error ra-
tio per class. We compare our algorithm with and with-
out high order terms, to the pairwise spectral matching
presented in [7]. Removing the high order terms re-
sults in a less expressive configuration of region corre-
spondences, which tends to produce matchings between
large patches of regions, usually belonging to the same
cluster. The main handicap of [7] is the one-to-one cor-
respondence constraint, which is very restrictive in the
context of region fusions and divisions.

The homogeneous and repetitive texture and color in
some monuments misleads the appearance costs, result-
ing in an aliasing effect where regions in one image are
matched to similar incorrect regions in the other image.
Adding high order terms solves this problem and, sur-
prisingly, the average computation time is reduced. The
explanation is found in these same potentials, which add
a constant cost to all the energy variable space, with
the exception of the allowed configurations. The energy
then tends to fall into the local minima of these low cost
variable realizations, and the optimization quickly con-
verges within this restrictive variable space.

We have observed that some mismatched regions are
due to a symmetric image structure. This is true for
instance, for the bottom left and bottom right vegeta-
tion areas surrounding the Eiffel tower. The effect is
mainly caused by the commute time graph layer, which
imposes equal penalties to clusters that are symmetri-
cally arranged.

5 Conclusions
In this work we have presented a novel approach

for image region matching. Our method first encodes

the image information with a coarse-to-fine hierarchy
graph, whose levels embed different abstractions of the
image contents. Our method explicitly handles many-
to-many correspondences by scoring the similarity of
subsets of region boundaries, which are encoded in high
order energy terms. The commute times metric solves
the structural noise problem of graph-based representa-
tions. We demonstrate the effectiveness of our method
performing matching on images of monuments. The re-
sults prove the matching to be robust against large vari-
ations on illumination, and viewpoint.
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