toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Aura Hernandez-Sabate; David Castells; Jordi Carrabina edit   pdf
openurl 
  Title CYBERH: Cyber-Physical Systems in Health for Personalized Assistance Type Conference Article
  Year 2017 Publication International Symposium on Symbolic and Numeric Algorithms for Scientific Computing Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Assistance systems for e-Health applications have some specific requirements that demand of new methods for data gathering, analysis and modeling able to deal with SmallData:
1) systems should dynamically collect data from, both, the environment and the user to issue personalized recommendations; 2) data analysis should be able to tackle a limited number of samples prone to include non-informative data and possibly evolving in time due to changes in patient condition; 3) algorithms should run in real time with possibly limited computational resources and fluctuant internet access.
Electronic medical devices (and CyberPhysical devices in general) can enhance the process of data gathering and analysis in several ways: (i) acquiring simultaneously multiple sensors data instead of single magnitudes (ii) filtering data; (iii) providing real-time implementations condition by isolating tasks in individual processors of multiprocessors Systems-on-chip (MPSoC) platforms and (iv) combining information through sensor fusion
techniques.
Our approach focus on both aspects of the complementary role of CyberPhysical devices and analysis of SmallData in the process of personalized models building for e-Health applications. In particular, we will address the design of Cyber-Physical Systems in Health for Personalized Assistance (CyberHealth) in two specific application cases: 1) A Smart Assisted Driving System (SADs) for dynamical assessment of the driving capabilities of Mild Cognitive Impaired (MCI) people; 2) An Intelligent Operating Room (iOR) for improving the yield of bronchoscopic interventions for in-vivo lung cancer diagnosis.
 
  Address Timisoara; Rumania; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SYNASC  
  Notes IAM; 600.085; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ GHC2017 Serial 3045  
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit   pdf
url  openurl
  Title Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy Type Conference Article
  Year 2018 Publication OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis Abbreviated Journal  
  Volume 11041 Issue Pages  
  Keywords Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification  
  Abstract Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems.  
  Address Granada; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes IAM; 600.096; 600.075; 601.323; 600.145 Approved no  
  Call Number Admin @ si @ RSB2018b Serial 3137  
Permanent link to this record
 

 
Author Marta Ligero; Guillermo Torres; Carles Sanchez; Katerine Diaz; Raquel Perez; Debora Gil edit  url
doi  openurl
  Title Selection of Radiomics Features based on their Reproducibility Type Conference Article
  Year 2019 Publication 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal  
  Volume Issue Pages 403-408  
  Keywords  
  Abstract Dimensionality reduction is key to alleviate machine learning artifacts in clinical applications with Small Sample Size (SSS) unbalanced datasets. Existing methods rely on either the probabilistic distribution of training data or the discriminant power of the reduced space, disregarding the impact of repeatability and uncertainty in features.In the present study is proposed the use of reproducibility of radiomics features to select features with high inter-class correlation coefficient (ICC). The reproducibility includes the variability introduced in the image acquisition, like medical scans acquisition parameters and convolution kernels, that affects intensity-based features and tumor annotations made by physicians, that influences morphological descriptors of the lesion.For the reproducibility of radiomics features three studies were conducted on cases collected at Vall Hebron Oncology Institute (VHIO) on responders to oncology treatment. The studies focused on the variability due to the convolution kernel, image acquisition parameters, and the inter-observer lesion identification. The features selected were those features with a ICC higher than 0.7 in the three studies.The selected features based on reproducibility were evaluated for lesion malignancy classification using a different database. Results show better performance compared to several state-of-the-art methods including Principal Component Analysis (PCA), Kernel Discriminant Analysis via QR decomposition (KDAQR), LASSO, and an own built Convolutional Neural Network.  
  Address Berlin; Alemanya; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference EMBC  
  Notes IAM; no menciona Approved no  
  Call Number Admin @ si @ LTS2019 Serial 3358  
Permanent link to this record
 

 
Author Debora Gil; Antonio Esteban Lansaque; Sebastian Stefaniga; Mihail Gaianu; Carles Sanchez edit  url
openurl 
  Title Data Augmentation from Sketch Type Conference Article
  Year 2019 Publication International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging Abbreviated Journal  
  Volume 11840 Issue Pages 155-162  
  Keywords Data augmentation; cycleGANs; Multi-objective optimization  
  Abstract State of the art machine learning methods need huge amounts of data with unambiguous annotations for their training. In the context of medical imaging this is, in general, a very difficult task due to limited access to clinical data, the time required for manual annotations and variability across experts. Simulated data could serve for data augmentation provided that its appearance was comparable to the actual appearance of intra-operative acquisitions. Generative Adversarial Networks (GANs) are a powerful tool for artistic style transfer, but lack a criteria for selecting epochs ensuring also preservation of intra-operative content.

We propose a multi-objective optimization strategy for a selection of cycleGAN epochs ensuring a mapping between virtual images and the intra-operative domain preserving anatomical content. Our approach has been applied to simulate intra-operative bronchoscopic videos and chest CT scans from virtual sketches generated using simple graphical primitives.
 
  Address Shenzhen; China; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CLIP  
  Notes IAM; 600.145; 601.337 Approved no  
  Call Number Admin @ si @ GES2019 Serial 3359  
Permanent link to this record
 

 
Author Carles Sanchez; Miguel Viñas; Coen Antens; Agnes Borras; Debora Gil edit  url
doi  openurl
  Title Back to Front Architecture for Diagnosis as a Service Type Conference Article
  Year 2018 Publication 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing Abbreviated Journal  
  Volume Issue Pages 343-346  
  Keywords  
  Abstract Software as a Service (SaaS) is a cloud computing model in which a provider hosts applications in a server that customers use via internet. Since SaaS does not require to install applications on customers' own computers, it allows the use by multiple users of highly specialized software without extra expenses for hardware acquisition or licensing. A SaaS tailored for clinical needs not only would alleviate licensing costs, but also would facilitate easy access to new methods for diagnosis assistance. This paper presents a SaaS client-server architecture for Diagnosis as a Service (DaaS). The server is based on docker technology in order to allow execution of softwares implemented in different languages with the highest portability and scalability. The client is a content management system allowing the design of websites with multimedia content and interactive visualization of results allowing user editing. We explain a usage case that uses our DaaS as crowdsourcing platform in a multicentric pilot study carried out to evaluate the clinical benefits of a software for assessment of central airway obstruction.  
  Address Timisoara; Rumania; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SYNASC  
  Notes IAM; no menciona Approved no  
  Call Number Admin @ si @ SVA2018 Serial 3360  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Petia Radeva; Antonio Tovar; Debora Gil edit   pdf
url  openurl
  Title Vessel structures alignment by spectral analysis of ivus sequences Type Conference Article
  Year 2006 Publication Proc. of CVII, MICCAI Workshop Abbreviated Journal  
  Volume Issue Pages 39-36  
  Keywords  
  Abstract Three-dimensional intravascular ultrasound (IVUS) allows to visualize and obtain volumetric measurements of coronary lesions through an exploration of the cross sections and longitudinal views of arteries. However, the visualization and subsequent morpho-geometric measurements in IVUS longitudinal cuts are subject to distortion caused by periodic image/vessel motion around the IVUS catheter. Usually, to overcome the image motion artifact ECG-gating and image-gated approaches are proposed, leading to slowing the pullback acquisition or disregarding part of IVUS data. In this paper, we argue that the image motion is due to 3-D vessel geometry as well as cardiac dynamics, and propose a dynamic model based on the tracking of an elliptical vessel approximation to recover the rigid transformation and align IVUS images without loosing any IVUS data. We report an extensive validation with synthetic simulated data and in vivo IVUS sequences of 30 patients achieving an average reduction of the image artifact of 97% in synthetic data and 79% in real-data. Our study shows that IVUS alignment improves longitudinal analysis of the IVUS data and is a necessary step towards accurate reconstruction and volumetric measurements of 3-D IVUS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhaguen (Denmark), Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) 1st International Wokshop on Computer Vision for Intravascular and Intracardiac Imaging (CVII’06) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HRT2006 Serial 1552  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; David Roche; Monica M. S. Matsumoto; Sergio S. Furuie edit   pdf
url  openurl
  Title Inferring the Performance of Medical Imaging Algorithms Type Conference Article
  Year 2011 Publication 14th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 6854 Issue Pages 520-528  
  Keywords Validation, Statistical Inference, Medical Imaging Algorithms.  
  Abstract Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence.
 
  Address Sevilla  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication Berlin Editor Pedro Real; Daniel Diaz-Pernil; Helena Molina-Abril; Ainhoa Berciano; Walter Kropatsch  
  Language Summary Language Original Title  
  Series Editor Series Title (up) L Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CAIP  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ HGR2011 Serial 1676  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil ; Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title Error Analysis for Lucas-Kanade Based Schemes Type Conference Article
  Year 2012 Publication 9th International Conference on Image Analysis and Recognition Abbreviated Journal  
  Volume 7324 Issue I Pages 184-191  
  Keywords Optical flow, Confidence measure, Lucas-Kanade, Cardiac Magnetic Resonance  
  Abstract Optical flow is a valuable tool for motion analysis in medical imaging sequences. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in medical sequences. This paper presents an error analysis of Lucas-Kanade schemes in terms of intrinsic design errors and numerical stability of the algorithm. Our analysis provides a confidence measure that is naturally correlated to the accuracy of the flow field. Our experiments show the higher predictive value of our confidence measure compared to existing measures.  
  Address Aveiro, Portugal  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication Editor  
  Language english Summary Language Original Title  
  Series Editor Campilho, Aurélio and Kamel, Mohamed Series Title (up) Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-31294-6 Medium  
  Area Expedition Conference ICIAR  
  Notes IAM Approved no  
  Call Number IAM @ iam @ MGH2012a Serial 1899  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: