toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Rosa Maria Ortiz; Debora Gil; Elisa Minchole; Marta Diez-Ferrer; Noelia Cubero de Frutos edit  openurl
  Title Classification of Confolcal Endomicroscopy Patterns for Diagnosis of Lung Cancer Type Conference Article
  Year 2017 Publication 18th World Conference on Lung Cancer Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.

The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.

We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.
 
  Address Yokohama; Japan; October 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IASLC WCLC  
  Notes IAM; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ OGM2017 Serial 3044  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; David Castells; Jordi Carrabina edit   pdf
openurl 
  Title CYBERH: Cyber-Physical Systems in Health for Personalized Assistance Type Conference Article
  Year 2017 Publication International Symposium on Symbolic and Numeric Algorithms for Scientific Computing Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Assistance systems for e-Health applications have some specific requirements that demand of new methods for data gathering, analysis and modeling able to deal with SmallData:
1) systems should dynamically collect data from, both, the environment and the user to issue personalized recommendations; 2) data analysis should be able to tackle a limited number of samples prone to include non-informative data and possibly evolving in time due to changes in patient condition; 3) algorithms should run in real time with possibly limited computational resources and fluctuant internet access.
Electronic medical devices (and CyberPhysical devices in general) can enhance the process of data gathering and analysis in several ways: (i) acquiring simultaneously multiple sensors data instead of single magnitudes (ii) filtering data; (iii) providing real-time implementations condition by isolating tasks in individual processors of multiprocessors Systems-on-chip (MPSoC) platforms and (iv) combining information through sensor fusion
techniques.
Our approach focus on both aspects of the complementary role of CyberPhysical devices and analysis of SmallData in the process of personalized models building for e-Health applications. In particular, we will address the design of Cyber-Physical Systems in Health for Personalized Assistance (CyberHealth) in two specific application cases: 1) A Smart Assisted Driving System (SADs) for dynamical assessment of the driving capabilities of Mild Cognitive Impaired (MCI) people; 2) An Intelligent Operating Room (iOR) for improving the yield of bronchoscopic interventions for in-vivo lung cancer diagnosis.
 
  Address Timisoara; Rumania; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SYNASC  
  Notes IAM; 600.085; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ GHC2017 Serial 3045  
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez Ferrer; Antoni Rosell; Debora Gil edit   pdf
url  openurl
  Title Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy Type Conference Article
  Year 2018 Publication OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis Abbreviated Journal  
  Volume 11041 Issue Pages  
  Keywords Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification  
  Abstract Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems.  
  Address Granada; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes IAM; 600.096; 600.075; 601.323; 600.145 Approved no  
  Call Number Admin @ si @ RSB2018b Serial 3137  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil ; Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title Error Analysis for Lucas-Kanade Based Schemes Type Conference Article
  Year 2012 Publication 9th International Conference on Image Analysis and Recognition Abbreviated Journal  
  Volume 7324 Issue I Pages 184-191  
  Keywords Optical flow, Confidence measure, Lucas-Kanade, Cardiac Magnetic Resonance  
  Abstract Optical flow is a valuable tool for motion analysis in medical imaging sequences. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in medical sequences. This paper presents an error analysis of Lucas-Kanade schemes in terms of intrinsic design errors and numerical stability of the algorithm. Our analysis provides a confidence measure that is naturally correlated to the accuracy of the flow field. Our experiments show the higher predictive value of our confidence measure compared to existing measures.  
  Address Aveiro, Portugal  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication Editor  
  Language english Summary Language Original Title  
  Series Editor (up) Campilho, Aurélio and Kamel, Mohamed Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-31294-6 Medium  
  Area Expedition Conference ICIAR  
  Notes IAM Approved no  
  Call Number IAM @ iam @ MGH2012a Serial 1899  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit   pdf
url  openurl
  Title Assessing agonist efficacy in an uncertain Em world Type Conference Article
  Year 2012 Publication 40th Keystone Symposia on mollecular and celular biology Abbreviated Journal  
  Volume Issue Pages 79  
  Keywords  
  Abstract The operational model of agonism has been widely used for the analysis of agonist action since its formulation in 1983. The model includes the Em parameter, which is defined as the maximum response of the system. The methods for Em estimation provide Em values not significantly higher than the maximum responses achieved by full agonists. However, it has been found that that some classes of compounds as, for instance, superagonists and positive allosteric modulators can increase the full agonist maximum response, implying upper limits for Em and thereby posing doubts on the validity of Em estimates. Because of the correlation between Em and operational efficacy, τ, wrong Em estimates will yield wrong τ estimates.
In this presentation, the operational model of agonism and various methods for the simulation of allosteric modulation will be analyzed. Alternatives for curve fitting will be presented and discussed.
 
  Address Fairmont Banff Springs, Banff, Alberta, Canada  
  Corporate Author Keystone Symposia Thesis  
  Publisher Keystone Symposia Place of Publication Editor A. Christopoulus and M. Bouvier  
  Language english Summary Language english Original Title  
  Series Editor (up) Keystone Symposia Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference KSMCB  
  Notes IAM Approved no  
  Call Number IAM @ iam @ RGG2012 Serial 1855  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: