|
Records |
Links |
|
Author |
Antonio Esteban Lansaque; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil |
|
|
Title |
Stable Anatomical Structure Tracking for video-bronchoscopy Navigation |
Type |
Conference Article |
|
Year |
2016 |
Publication |
19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Lung cancer diagnosis; video-bronchoscopy; airway lumen detection; region tracking |
|
|
Abstract |
Bronchoscopy allows to examine the patient airways for detection of lesions and sampling of tissues without surgery. A main drawback in lung cancer diagnosis is the diculty to check whether the exploration is following the correct path to the nodule that has to be biopsied. The most extended guidance uses uoroscopy which implies repeated radiation of clinical sta and patients. Alternatives such as virtual bronchoscopy or electromagnetic navigation are very expensive and not completely robust to blood, mocus or deformations as to be extensively used. We propose a method that extracts and tracks stable lumen regions at dierent levels of the bronchial tree. The tracked regions are stored in a tree that encodes the anatomical structure of the scene which can be useful to retrieve the path to the lesion that the clinician should follow to do the biopsy. We present a multi-expert validation of our anatomical landmark extraction in 3 intra-operative ultrathin explorations. |
|
|
Address |
Athens; Greece; October 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MICCAIW |
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LSB2016b |
Serial |
2857 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Aura Hernandez-Sabate; David Castells; Jordi Carrabina |
|
|
Title |
CYBERH: Cyber-Physical Systems in Health for Personalized Assistance |
Type |
Conference Article |
|
Year |
2017 |
Publication |
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Assistance systems for e-Health applications have some specific requirements that demand of new methods for data gathering, analysis and modeling able to deal with SmallData:
1) systems should dynamically collect data from, both, the environment and the user to issue personalized recommendations; 2) data analysis should be able to tackle a limited number of samples prone to include non-informative data and possibly evolving in time due to changes in patient condition; 3) algorithms should run in real time with possibly limited computational resources and fluctuant internet access.
Electronic medical devices (and CyberPhysical devices in general) can enhance the process of data gathering and analysis in several ways: (i) acquiring simultaneously multiple sensors data instead of single magnitudes (ii) filtering data; (iii) providing real-time implementations condition by isolating tasks in individual processors of multiprocessors Systems-on-chip (MPSoC) platforms and (iv) combining information through sensor fusion
techniques.
Our approach focus on both aspects of the complementary role of CyberPhysical devices and analysis of SmallData in the process of personalized models building for e-Health applications. In particular, we will address the design of Cyber-Physical Systems in Health for Personalized Assistance (CyberHealth) in two specific application cases: 1) A Smart Assisted Driving System (SADs) for dynamical assessment of the driving capabilities of Mild Cognitive Impaired (MCI) people; 2) An Intelligent Operating Room (iOR) for improving the yield of bronchoscopic interventions for in-vivo lung cancer diagnosis. |
|
|
Address |
Timisoara; Rumania; September 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SYNASC |
|
|
Notes |
IAM; 600.085; 600.096; 600.075; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GHC2017 |
Serial |
3045 |
|
Permanent link to this record |
|
|
|
|
Author |
Carles Sanchez; Antonio Esteban Lansaque; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil |
|
|
Title |
Towards a Videobronchoscopy Localization System from Airway Centre Tracking |
Type |
Conference Article |
|
Year |
2017 |
Publication |
12th International Conference on Computer Vision Theory and Applications |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
352-359 |
|
|
Keywords |
Video-bronchoscopy; Lung cancer diagnosis; Airway lumen detection; Region tracking; Guided bronchoscopy navigation |
|
|
Abstract |
Bronchoscopists use fluoroscopy to guide flexible bronchoscopy to the lesion to be biopsied without any kind of incision. Being fluoroscopy an imaging technique based on X-rays, the risk of developmental problems and cancer is increased in those subjects exposed to its application, so minimizing radiation is crucial. Alternative guiding systems such as electromagnetic navigation require specific equipment, increase the cost of the clinical procedure and still require fluoroscopy. In this paper we propose an image based guiding system based on the extraction of airway centres from intra-operative videos. Such anatomical landmarks are matched to the airway centreline extracted from a pre-planned CT to indicate the best path to the nodule. We present a
feasibility study of our navigation system using simulated bronchoscopic videos and a multi-expert validation of landmarks extraction in 3 intra-operative ultrathin explorations. |
|
|
Address |
Porto; Portugal; February 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
VISAPP |
|
|
Notes |
IAM; 600.096; 600.075; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SEB2017 |
Serial |
2943 |
|
Permanent link to this record |
|
|
|
|
Author |
Rosa Maria Ortiz; Debora Gil; Elisa Minchole; Marta Diez-Ferrer; Noelia Cubero de Frutos |
|
|
Title |
Classification of Confolcal Endomicroscopy Patterns for Diagnosis of Lung Cancer |
Type |
Conference Article |
|
Year |
2017 |
Publication |
18th World Conference on Lung Cancer |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.
The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.
We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results. |
|
|
Address |
Yokohama; Japan; October 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IASLC WCLC |
|
|
Notes |
IAM; 600.096; 600.075; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OGM2017 |
Serial |
3044 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Oriol Ramos Terrades; Elisa Minchole; Carles Sanchez; Noelia Cubero de Frutos; Marta Diez-Ferrer; Rosa Maria Ortiz; Antoni Rosell |
|
|
Title |
Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer |
Type |
Conference Article |
|
Year |
2017 |
Publication |
6th Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging |
Abbreviated Journal |
|
|
|
Volume |
10550 |
Issue |
|
Pages |
151-159 |
|
|
Keywords |
|
|
|
Abstract |
Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.
The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.
We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results. |
|
|
Address |
Quebec; Canada; September 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CLIP |
|
|
Notes |
IAM; 600.096; 600.075; 600.145;DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRM2017 |
Serial |
2957 |
|
Permanent link to this record |
|
|
|
|
Author |
Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil |
|
|
Title |
Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy |
Type |
Conference Article |
|
Year |
2018 |
Publication |
OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
11041 |
Issue |
|
Pages |
|
|
|
Keywords |
Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification |
|
|
Abstract |
Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems. |
|
|
Address |
Granada; September 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MICCAIW |
|
|
Notes |
IAM; 600.096; 600.075; 601.323; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RSB2018b |
Serial |
3137 |
|
Permanent link to this record |
|
|
|
|
Author |
Mireia Sole; Joan Blanco; Debora Gil; Oliver Valero; G. Fonseka; M. Lawrie; Francesca Vidal; Zaida Sarrate |
|
|
Title |
Chromosome Territories in Mice Spermatogenesis: A new three-dimensional methodology of study |
Type |
Conference Article |
|
Year |
2017 |
Publication |
11th European CytoGenesis Conference |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Florencia; Italia; July 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECA |
|
|
Notes |
IAM; 600.096; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SBG2017a |
Serial |
2936 |
|
Permanent link to this record |
|
|
|
|
Author |
Mireia Sole; Joan Blanco; Debora Gil; G. Fonseka; Richard Frodsham; Oliver Valero; Francesca Vidal; Zaida Sarrate |
|
|
Title |
Is there a pattern of Chromosome territoriality along mice spermatogenesis? |
Type |
Conference Article |
|
Year |
2017 |
Publication |
3rd Spanish MeioNet Meeting Abstract Book |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
55-56 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Miraflores de la Sierra; Madrid; June 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MEIONET |
|
|
Notes |
IAM; 600.096; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
2958 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Elias Yauri; Aura Hernandez-Sabate; Pau Folch; Debora Gil |
|
|
Title |
Mental Workload Detection Based on EEG Analysis |
Type |
Conference Article |
|
Year |
2021 |
Publication |
Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. |
Abbreviated Journal |
|
|
|
Volume |
339 |
Issue |
|
Pages |
268-277 |
|
|
Keywords |
Cognitive states; Mental workload; EEG analysis; Neural Networks. |
|
|
Abstract |
The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation. |
|
|
Address |
Virtual; October 20-22 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CCIA |
|
|
Notes |
IAM; 600.139; 600.118; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3723 |
|
Permanent link to this record |
|
|
|
|
Author |
Marta Ligero; Guillermo Torres; Carles Sanchez; Katerine Diaz; Raquel Perez; Debora Gil |
|
|
Title |
Selection of Radiomics Features based on their Reproducibility |
Type |
Conference Article |
|
Year |
2019 |
Publication |
41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
403-408 |
|
|
Keywords |
|
|
|
Abstract |
Dimensionality reduction is key to alleviate machine learning artifacts in clinical applications with Small Sample Size (SSS) unbalanced datasets. Existing methods rely on either the probabilistic distribution of training data or the discriminant power of the reduced space, disregarding the impact of repeatability and uncertainty in features.In the present study is proposed the use of reproducibility of radiomics features to select features with high inter-class correlation coefficient (ICC). The reproducibility includes the variability introduced in the image acquisition, like medical scans acquisition parameters and convolution kernels, that affects intensity-based features and tumor annotations made by physicians, that influences morphological descriptors of the lesion.For the reproducibility of radiomics features three studies were conducted on cases collected at Vall Hebron Oncology Institute (VHIO) on responders to oncology treatment. The studies focused on the variability due to the convolution kernel, image acquisition parameters, and the inter-observer lesion identification. The features selected were those features with a ICC higher than 0.7 in the three studies.The selected features based on reproducibility were evaluated for lesion malignancy classification using a different database. Results show better performance compared to several state-of-the-art methods including Principal Component Analysis (PCA), Kernel Discriminant Analysis via QR decomposition (KDAQR), LASSO, and an own built Convolutional Neural Network. |
|
|
Address |
Berlin; Alemanya; July 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
EMBC |
|
|
Notes |
IAM; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LTS2019 |
Serial |
3358 |
|
Permanent link to this record |