|
Records |
Links |
|
Author |
Debora Gil; Aura Hernandez-Sabate; Antoni Carol; Oriol Rodriguez; Petia Radeva |
|
|
Title |
A Deterministic-Statistic Adventitia Detection in IVUS Images |
Type |
Conference Article |
|
Year |
2005 |
Publication |
ESC Congress |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation |
|
|
Abstract |
Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles. |
|
|
Address |
Stockholm; Sweden; September 2005 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
,Sweden (EU) |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ESC |
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ RMF2005a |
Serial |
1523 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Aura Hernandez-Sabate; Antoni Carol; Oriol Rodriguez; Petia Radeva |
|
|
Title |
A Deterministic-Statistic Adventitia Detection in IVUS Images |
Type |
Conference Article |
|
Year |
2005 |
Publication |
3rd International workshop on International Workshop on Functional Imaging and Modeling of the Heart |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
65-74 |
|
|
Keywords |
Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation |
|
|
Abstract |
Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles. |
|
|
Address |
Barcelona; June 2005 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
FIMH |
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ RMF2005 |
Serial |
1524 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Aura Hernandez-Sabate; Mireia Burnat; Steven Jansen; Jordi Martinez-Vilalta |
|
|
Title |
Structure-Preserving Smoothing of Biomedical Images |
Type |
Conference Article |
|
Year |
2009 |
Publication |
13th International Conference on Computer Analysis of Images and Patterns |
Abbreviated Journal |
|
|
|
Volume |
5702 |
Issue |
|
Pages |
427-434 |
|
|
Keywords |
non-linear smoothing; differential geometry; anatomical structures segmentation; cardiac magnetic resonance; computerized tomography. |
|
|
Abstract |
Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images. |
|
|
Address |
Münster, Germany |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-03766-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CAIP |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GHB2009 |
Serial |
1527 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Oriol Rodriguez; J. Mauri; Petia Radeva |
|
|
Title |
Statistical descriptors of the Myocardial perfusion in angiographic images |
Type |
Conference Article |
|
Year |
2006 |
Publication |
Proc. Computers in Cardiology |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
677-680 |
|
|
Keywords |
Anisotropic processing; intravascular ultrasound (IVUS); vessel border segmentation; vessel structure classification. |
|
|
Abstract |
Restoration of coronary flow after primary percutaneous coronary intervention in acute myocardial infarction does not always correlate with adequate myocardial perfusion. Recently, coronary angiography has been used to assess microcirculation integrity (Myocardial BlushAnalysis, MBA). Although MBA correlates with patient prognosis there are few image processing methods addressing objective perfusion quantification. The goal of this work is to develop statistical descriptors of the myocardial dyeing pattern allowing objective assessment of myocardial perfusion. Experiments on healthy right coronary arteries show that our approach allows reliable measurements without any specific image acquisition protocol. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRR2006 |
Serial |
1528 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva; J. Mauri |
|
|
Title |
Ivus Segmentation Via a Regularized Curvature Flow |
Type |
Conference Article |
|
Year |
2002 |
Publication |
X Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2002 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
133-136 |
|
|
Keywords |
|
|
|
Abstract |
Cardiac diseases are diagnosed and treated through a study of the morphology and dynamics of cardiac arteries. In- travascular Ultrasound (IVUS) imaging is of high interest to physicians since it provides both information. At the current state-of-the-art in image segmentation, a robust detection of the arterial lumen in IVUS demands manual intervention or ECG-gating. Manual intervention is a tedious and time consuming task that requires experienced observers, meanwhile ECG-gating is an acquisition technique not available in all clinical centers. We introduce a parametric algorithm that detects the arterial luminal border in in vivo sequences. The method consist in smoothing the sequences’ level surfaces under a regularized mean curvature flow that admits non-trivial steady states. The flow is based on a measure of the surface local smoothness that takes into account regularity of the surface curvature. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Saragossa, Espanya |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRM2002 |
Serial |
1536 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva; Jordi Saludes; J. Mauri |
|
|
Title |
Automatic Segmentation of Artery Wall in Coronary IVUS Images: A Probabilistic Approach |
Type |
Conference Article |
|
Year |
2000 |
Publication |
International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
|
Pages |
352-355 |
|
|
Keywords |
|
|
|
Abstract |
Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRS2000a |
Serial |
1537 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva; Jordi Saludes; J. Mauri |
|
|
Title |
Automatic Segmentation of Artery Wall in Coronary IVUS Images: a Probabilistic Approach |
Type |
Conference Article |
|
Year |
2000 |
Publication |
Proceedings of CIC’2000 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Cambridge, Massachussets |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CIC |
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRS2000 |
Serial |
1538 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva; Fernando Vilariño |
|
|
Title |
Anisotropic Contour Completion |
Type |
Conference Article |
|
Year |
2003 |
Publication |
Proceedings of the IEEE International Conference on Image Processing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
I-869 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we introduce a novel application of the diffusion tensor for anisotropic image processing. The Anisotropic Contour Completion (ACC) we suggest consists in extending the characteristic function of the open curve by means of a degenerated diffusion tensor that prevents any diffusion in the normal direction. We show that ACC is equivalent to a dilation with a continuous elliptic structural element that takes into account the local orientation of the contours to be closed. Experiments on contours extracted from real images show that ACC produces shapes able to adapt to any curve in an active contour framework. 1. |
|
|
Address |
Barcelona, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Barcelona, Spain |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
0-7803-7751-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICIP |
|
|
Notes |
IAM;MV;MILAB;SIAI |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRV2003 |
Serial |
1539 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; Petia Radeva |
|
|
Title |
On the usefulness of supervised learning for vessel border detection in IntraVascular Imaging |
Type |
Conference Article |
|
Year |
2005 |
Publication |
Proceeding of the 2005 conference on Artificial Intelligence Research and Development |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
67-74 |
|
|
Keywords |
classification; vessel border modelling; IVUS |
|
|
Abstract |
IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis of cardiac diseases since sequences completely show the morphology of coronary vessels. Vessel borders detection, especially the external adventitia layer, plays a central role in morphological measures and, thus, their segmentation feeds development of medical imaging techniques. Deterministic approaches fail to yield optimal results due to the large amount of IVUS artifacts and vessel borders descriptors. We propose using classification techniques to learn the set of descriptors and parameters that best detect vessel borders. Statistical hypothesis test on the error between automated detections and manually traced borders by 4 experts show that our detections keep within inter-observer variability. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IOS Press |
Place of Publication |
Amsterdam, The Netherlands |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGR2005c |
Serial |
1549 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; Albert Teis |
|
|
Title |
How Do Conservation Laws Define a Motion Suppression Score in In-Vivo Ivus Sequences? |
Type |
Conference Article |
|
Year |
2007 |
Publication |
Proc. IEEE Ultrasonics Symp |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
2231-2234 |
|
|
Keywords |
validation standards; IVUS motion compensation; conservation laws. |
|
|
Abstract |
Evaluation of arterial tissue biomechanics for diagnosis and treatment of cardiovascular diseases is an active research field in the biomedical imaging processing area. IntraVascular UltraSound (IVUS) is a unique tool for such assessment since it reflects tissue morphology and deformation. A proper quantification and visualization of both properties is hindered by vessel structures misalignments introduced by cardiac dynamics. This has encouraged development of IVUS motion compensation techniques. However, there is a lack of an objective evaluation of motion reduction ensuring a reliable clinical application This work reports a novel score, the Conservation of Density Rate (CDR), for validation of motion compensation in in-vivo pullbacks. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; while results in in vivo pullbacks show its reliability in clinical cases. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HTG2007 |
Serial |
1550 |
|
Permanent link to this record |