toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Jaume Garcia; Ruth Aris; Guillaume Houzeaux; Manuel Vazquez edit   pdf
openurl 
  Title A Riemmanian approach to cardiac fiber architecture modelling Type Conference Article
  Year 2009 Publication 1st International Conference on Mathematical & Computational Biomedical Engineering Abbreviated Journal  
  Volume Issue Pages 59-62  
  Keywords cardiac fiber architecture; diffusion tensor magnetic resonance imaging; differential (Rie- mannian) geometry.  
  Abstract There is general consensus that myocardial fiber architecture should be modelled in order to fully understand the electromechanical properties of the Left Ventricle (LV). Diffusion Tensor magnetic resonance Imaging (DTI) is the reference image modality for rapid measurement of fiber orientations by means of the tensor principal eigenvectors. In this work, we present a mathematical framework for across subject comparison of the local geometry of the LV anatomy including the fiber architecture from the statistical analysis of DTI studies. We use concepts of differential geometry for defining a parametric domain suitable for statistical analysis of a low number of samples. We use Riemannian metrics to define a consistent computation of DTI principal eigenvector modes of variation. Our framework has been applied to build an atlas of the LV fiber architecture from 7 DTI normal canine hearts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Swansea (UK) Editor Nithiarasu, R.L.R.V.L.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CMBE  
  Notes IAM Approved no  
  Call Number IAM @ iam @ FGA2009 Serial 1520  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title Evaluation of the Capabilities of Confidence Measures for Assessing Optical Flow Quality Type Conference Article
  Year 2013 Publication ICCV Workshop on Computer Vision in Vehicle Technology: From Earth to Mars Abbreviated Journal  
  Volume Issue Pages 624-631  
  Keywords  
  Abstract Assessing Optical Flow (OF) quality is essential for its further use in reliable decision support systems. The absence of ground truth in such situations leads to the computation of OF Confidence Measures (CM) obtained from either input or output data. A fair comparison across the capabilities of the different CM for bounding OF error is required in order to choose the best OF-CM pair for discarding points where OF computation is not reliable. This paper presents a statistical probabilistic framework for assessing the quality of a given CM. Our quality measure is given in terms of the percentage of pixels whose OF error bound can not be determined by CM values. We also provide statistical tools for the computation of CM values that ensures a given accuracy of the flow field.  
  Address Sydney; Australia; December 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) CVTT:E2M  
  Notes IAM; ADAS; 600.044; 600.057; 601.145 Approved no  
  Call Number Admin @ si @ MGH2013b Serial 2351  
Permanent link to this record
 

 
Author Guillermo Torres; Jan Rodríguez Dueñas; Sonia Baeza; Antoni Rosell; Carles Sanchez; Debora Gil edit   pdf
url  openurl
  Title Prediction of Malignancy in Lung Cancer using several strategies for the fusion of Multi-Channel Pyradiomics Images Type Conference Article
  Year 2023 Publication 7th Workshop on Digital Image Processing for Medical and Automotive Industry in the framework of SYNASC 2023 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This study shows the generation process and the subsequent study of the representation space obtained by extracting GLCM texture features from computer-aided tomography (CT) scans of pulmonary nodules (PN). For this, data from 92 patients from the Germans Trias i Pujol University Hospital were used. The workflow focuses on feature extraction using Pyradiomics and the VGG16 Convolutional Neural Network (CNN). The aim of the study is to assess whether the data obtained have a positive impact on the diagnosis of lung cancer (LC). To design a machine learning (ML) model training method that allows generalization, we train SVM and neural network (NN) models, evaluating diagnosis performance using metrics defined at slice and nodule level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) DIPMAI  
  Notes IAM Approved no  
  Call Number Admin @ si @ TRB2023 Serial 3926  
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; Oliver Valero; G. Fonseka; M. Lawrie; Francesca Vidal; Zaida Sarrate edit   pdf
openurl 
  Title Chromosome Territories in Mice Spermatogenesis: A new three-dimensional methodology of study Type Conference Article
  Year 2017 Publication 11th European CytoGenesis Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Florencia; Italia; July 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) ECA  
  Notes IAM; 600.096; 600.145 Approved no  
  Call Number Admin @ si @ SBG2017a Serial 2936  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit   pdf
openurl 
  Title Using statistical inference for designing termination conditions ensuring convergence of Evolutionary Algorithms Type Conference Article
  Year 2011 Publication 11th European Conference on Artificial Life Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract A main challenge in Evolutionary Algorithms (EAs) is determining a termination condition ensuring stabilization close to the optimum in real-world applications. Although for known test functions distribution-based quantities are good candidates (as far as suitable parameters are used), in real-world problems an open question still remains unsolved. How can we estimate an upper-bound for the termination condition value ensuring a given accuracy for the (unknown) EA solution?
We claim that the termination problem would be fully solved if we defined a quantity (depending only on the EA output) behaving like the solution accuracy. The open question would be, then, satisfactorily answered if we had a model relating both quantities, since accuracy could be predicted from the alternative quantity. We present a statistical inference framework addressing two topics: checking the correlation between the two quantities and defining a regression model for predicting (at a given confidence level) accuracy values from the EA output.
 
  Address Paris, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) ECAL  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ RGG2011b Serial 1678  
Permanent link to this record
 

 
Author Carles Sanchez; Debora Gil; R. Tazi; Jorge Bernal; Y. Ruiz; L. Planas; F. Javier Sanchez; Antoni Rosell edit  openurl
  Title Quasi-real time digital assessment of Central Airway Obstruction Type Conference Article
  Year 2015 Publication 3rd European congress for bronchology and interventional pulmonology ECBIP2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Barcelona; Spain; April 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) ECBIP  
  Notes IAM; MV; 600.075 Approved no  
  Call Number SGT2015 Serial 2612  
Permanent link to this record
 

 
Author Patricia Marquez;Debora Gil;Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title A Complete Confidence Framework for Optical Flow Type Conference Article
  Year 2012 Publication 12th European Conference on Computer Vision – Workshops and Demonstrations Abbreviated Journal  
  Volume 7584 Issue 2 Pages 124-133  
  Keywords Optical flow, confidence measures, sparsification plots, error prediction plots  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Florence, Italy, October 7-13, 2012 Editor Andrea Fusiello, Vittorio Murino ,Rita Cucchiara  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-33867-0 Medium  
  Area Expedition Conference (up) ECCVW  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MGH2012b Serial 1991  
Permanent link to this record
 

 
Author Saad Minhas; Aura Hernandez-Sabate; Shoaib Ehsan; Katerine Diaz; Ales Leonardis; Antonio Lopez; Klaus McDonald Maier edit   pdf
openurl 
  Title LEE: A photorealistic Virtual Environment for Assessing Driver-Vehicle Interactions in Self-Driving Mode Type Conference Article
  Year 2016 Publication 14th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume 9915 Issue Pages 894-900  
  Keywords Simulation environment; Automated Driving; Driver-Vehicle interaction  
  Abstract Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.  
  Address Amsterdam; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) ECCVW  
  Notes ADAS;IAM; 600.085; 600.076 Approved no  
  Call Number MHE2016 Serial 2865  
Permanent link to this record
 

 
Author Jaume Garcia; Albert Andaluz; Debora Gil; Francesc Carreras edit   pdf
url  doi
isbn  openurl
  Title Decoupled External Forces in a Predictor-Corrector Segmentation Scheme for LV Contours in Tagged MR Images Type Conference Article
  Year 2010 Publication 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal  
  Volume Issue Pages 4805-4808  
  Keywords  
  Abstract Computation of functional regional scores requires proper identification of LV contours. On one hand, manual segmentation is robust, but it is time consuming and requires high expertise. On the other hand, the tag pattern in TMR sequences is a problem for automatic segmentation of LV boundaries. We propose a segmentation method based on a predictorcorrector (Active Contours – Shape Models) scheme. Special stress is put in the definition of the AC external forces. First, we introduce a semantic description of the LV that discriminates myocardial tissue by using texture and motion descriptors. Second, in order to ensure convergence regardless of the initial contour, the external energy is decoupled according to the orientation of the edges in the image potential. We have validated the model in terms of error in segmented contours and accuracy of regional clinical scores.  
  Address Buenos Aires (Argentina)  
  Corporate Author IEEE EMB Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-170X ISBN 978-1-4244-4123-5 Medium  
  Area Expedition Conference (up) EMBC  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GAG2010 Serial 1514  
Permanent link to this record
 

 
Author Marta Ligero; Guillermo Torres; Carles Sanchez; Katerine Diaz; Raquel Perez; Debora Gil edit   pdf
url  doi
openurl 
  Title Selection of Radiomics Features based on their Reproducibility Type Conference Article
  Year 2019 Publication 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal  
  Volume Issue Pages 403-408  
  Keywords  
  Abstract Dimensionality reduction is key to alleviate machine learning artifacts in clinical applications with Small Sample Size (SSS) unbalanced datasets. Existing methods rely on either the probabilistic distribution of training data or the discriminant power of the reduced space, disregarding the impact of repeatability and uncertainty in features.In the present study is proposed the use of reproducibility of radiomics features to select features with high inter-class correlation coefficient (ICC). The reproducibility includes the variability introduced in the image acquisition, like medical scans acquisition parameters and convolution kernels, that affects intensity-based features and tumor annotations made by physicians, that influences morphological descriptors of the lesion.For the reproducibility of radiomics features three studies were conducted on cases collected at Vall Hebron Oncology Institute (VHIO) on responders to oncology treatment. The studies focused on the variability due to the convolution kernel, image acquisition parameters, and the inter-observer lesion identification. The features selected were those features with a ICC higher than 0.7 in the three studies.The selected features based on reproducibility were evaluated for lesion malignancy classification using a different database. Results show better performance compared to several state-of-the-art methods including Principal Component Analysis (PCA), Kernel Discriminant Analysis via QR decomposition (KDAQR), LASSO, and an own built Convolutional Neural Network.  
  Address Berlin; Alemanya; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up) EMBC  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ LTS2019 Serial 3358  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: