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Abstract

A main challenge in Evolutionary Algorithms (EAs) is deter-
mining a termination condition ensuring stabilization close to
the optimum in real-world applications. Although for known
test functions distribution-based quantities are good candi-
dates (as far as suitable parameters are used), in real-world
problems an open question still remains unsolved. How can
we estimate an upper-bound for the termination condition
value ensuring a given accuracy for the (unknown) EA so-
lution?

We claim that the termination problem would be fully solved
if we defined a quantity (depending only on the EA output)
behaving like the solution accuracy. The open question would
be, then, satisfactorily answered if we had a model relat-
ing both quantities, since accuracy could be predicted from
the alternative quantity. We present a statistical inference
framework addressing two topics: checking the correlation
between the two quantities and defining a regression model
for predicting (at a given confidence level) accuracy values
from the EA output.

Introduction
Evolutionary Algorithms (EAs) are a class of stochastic op-
timization methods that simulate the process of natural evo-
lution. EAs maintain a population of possible solutions
that evolve according to rules of selection and other oper-
ators, such as recombination and mutation. Several evolu-
tionary methodologies have been proposed for solving real
world optimization problems: genetic algorithms (Holland,
tion), evolutionary strategies (Schwefel, 1995) and differ-
ential evolution (Storn and Price, 1997) among others. By
their ability to optimizing non-analytic multi-modal func-
tions, EAs have been successfully applied to a wide range of
real life problems, such as parameter estimation (Ravikumar
and Panigrahi, 2010), pattern and text recognition (Rizki
et al., 2002) and image processing (Cagnoni et al., 2008).

As any iterative technique, EA requires a stop criterion.
Unlike optimization methods evolving a single initial value
(which rely on real analysis theory), by their stochastic na-
ture, there is not a solid mathematical theory ensuring con-

vergence of evolutionary methodologies in general (Safe
et al., 2004; Bäck et al., 1997).

The simplest (an most extended (Safe et al., 2004; Price
et al., 2005; Tagetiren and Suganthan, 2006)) stopping crite-
rion consists in reaching a number of iterations or function
evaluations. This stopping criterion is not useful by itself
(the number of iterations that guarantee convergence signif-
icantly varies across problems (Safe et al., 2004)), though it
can be necessary when used in addition with alternative cri-
teria to ensure that the algorithm stops (Zielinski and Laur,
2010).

Existing approaches defining general alternative termi-
nation conditions address two issues. First, the defini-
tion of a quantity reflecting the amount of change between
consecutive iterations and, second, the condition that such
quantity should fulfill. The quantities reported in the lit-
erature (Zielinski and Laur, 2010; Safe et al., 2004) mea-
sure either the rate of change in the objective function
(improvement-based) or the distribution of the evolving pop-
ulation (distribution-based). Concerning the termination
condition, two different conditions are considered. The first
condition terminates EA if the measure of the amount of
change is below a given threshold. The second one termi-
nates EA in the case that such measure is below a thresh-
old for a number of generations. Improvement-based crite-
ria may lead to early termination (possibly far from the opti-
mum) due to the stochastic nature of EA (Zielinski and Laur,
2010). Meanwhile, distribution-based quantities compare to
the accuracy of the solution (distance to the optimum) in
terms of number of function executions, as far as suitable
parameters (threshold and number of generations) for the
termination condition are set (Zielinski and Laur, 2010).

A main limitation for application to real-world problems
is that the parameters of the termination condition strongly
depend on the topology of the objective function (Zielinski
and Laur, 2010). Another concern is that current approaches
constrain to statistically comparing the number of iterations
reached by the termination condition to the number of it-
erations required to achieved a given distance to the opti-
mum (Zielinski and Laur, 2010). Although experiments re-



port promising results, the statistical tools used so far can
not answer two main (still open) questions. How can we de-
fine a termination condition?. Given a confidence level, how
can we estimate an upper-bound for the number of iterations
required to ensure convergence?.

We propose posing the termination problem in statistical
inference terms. From the perspective of statistical infer-
ence, the termination problem consists in designing a quan-
tity (depending only on the EA output) that correlates to
the accuracy of the solution, so that they can be swapped.
This paper introduces a general inference model for predict-
ing the accuracy of the EA solution from the EA current
state. We show that a linear regression model in logarith-
mic scale accurately relates accuracy and distribution-based
quantities. We use the inference model to compare several
types of distribution-based quantities reported in the litera-
ture (Zielinski and Laur, 2010). Our experiments indicate
that the maximum distance to the best individual is the best
choice in terms of computational efficiency and capability
of predicting EA accuracy.

Inference Model
The distance to the (known) function minimum is our gold-
standard reference convergence criterion, given that is di-
rectly associated to the algorithm accuracy. This criterion
can only be computed if the optimum of the test function is
known and, thus, is useless in real-world problems. We com-
pute it as the maximum distance to the function minimum of
a certain percentage p of the individuals (Zielinski and Laur,
2010) and note it by RefCrit. Regarding the alternative
quantities, which we will note by AltCrit in general, we
have considered the following distribution-based quantities
(Zielinski and Laur, 2010):

1. Maximum Distance (MxD). It is given by the maximum
distance of the population to the best individual.

2. Population Variability (Std). It is the maximum stan-
dard deviation of the population.

Both quantities can be computed using all individuals or
considering only a percentage p of the individuals. The latter
is computationally faster and will be indicated by the sufix
Quick.

Our final goal is to control (predict) the values taken by
RefCrit from the values taken by the alternative measure
AltCrit. In inference statistics, this is achieved by relating
both quantities using a regression model.

Regression Model
Given a sampling of two random variables (x and y), the
linear regression of y (response variable) over x (explicative
variable) is formulated as:

yi = β0 + β1xi + εi (1)

for xi, yi the sampling of x and y and εi a random error
satisfying:

Model Assumptions

1. Linearity: E(εi) = 0

2. Homocedasticity: V AR(εi) = σ2, ∀i

3. Uncorrelation: COV (εiεj) = 0, , ∀i, j

4. Gaussianity: εi ∼ N(0, σ2), for N(0, σ2) a normal dis-
tribution.

The parameters of the regression model (1) are the regres-
sion coefficients β = (β0, β1) and the error variance σ2. The
regression coefficients describe the way the two variables re-
late, while the variance indicates the accuracy of the model
and, thus, measures to what extent x can predict y.

Given that, in our case, the inference is over RefCrit,
our model is:

RefCriti = β0 + β1AltCriti + εi (2)

for RefCriti, AltCriti the values of RefCrit and
AltCrit obtained at the i-th iteration.

For a sample of lengthN , the regression coefficients, β̂ =

(β̂0, β̂1), are computed by Least Squares Estimation (LSE)
as:

β̂ = (XTX)−1XTY (3)

for X =

 1 x1
...

...
1 xN

, Y = (y1, . . . , yN ) and T denoting

the transpose of a matrix. The differences between estimated
responses, ŷi = β̂0 + β̂1xi, and observed responses yi:

ei = yi − ŷi

are called residuals. Their square sum provides an estima-
tion of the error variance:

SR = σ̂2 =

∑
e2i

n− 2
(4)

The four model conditions endow desirable properties to
the LSE of the regression coefficients (Ashish, 1990). By
the Gauss-Markov theorem under the first three assump-
tions, the LSE are best linear unbiased estimators and assure
that predictions made by least squares fitted equations are
good. By adding the fourth assumption (error gaussianity),
the LSE has minimum variance among all unbiased estima-
tors (not just linear) and allows the use of parametric tests,
such as the Student’s t-test for testing hypothesis on parame-
ter values. The central limit theorem (asymptotically) guar-
antees this last property for large samples. Therefore, given
that we have as much samples as EA iterations, in our case,
the gaussianity is not a critical issue.



Figure 1: Residual diagnosis plots

The standarized residuals:

eni = (ei − µ(ei))/std(ei)

,for µ the average and std the standard deviation, are used
to verify the model assumptions. The plot of eni over ŷi is
called the versus fit plot and reflects linearity (in the measure
that it is centered at zero) and homocedasticity (uniform de-
viation from zero). The plot of en vs the sorted explicative
variable is called the versus order plot and serves to detect
any correlation pattern. Finally, the histogram of the stan-
darized residuals reflects Gaussianity (Newbold et al., 2007).

Figure 1 shows the residuals diagnosis plots. From left to
right, we plot the versus fit plot, the versus order plot and
the histogram for the standarized residuals en. The plots at
normal scale in the first row show that linearity (versus fit
plot is centered at zero) and uncorrelation (versus order plot
presents no pattern) are fully satisfied. Meanwhile, we ob-
serve a clear heterocedasticity in the versus fit plot which
presents an increasing deviation from zero. This hetero-
cedasticity is due to a decrease in the population sparse-
ness at advance stages of EA and also affects the Gaussian-
ity assumption, as shown in the most-left histogram of the
first row. A monotonous increase in σ2 is usually solved
by taking logarithms in both variables (Arnold, 1997). The
residuals plots for the regression model in logarithmic scale
(second row in fig. 1) indicate a good homocedasticity and
Gaussianity for the standarized residuals.

From now on, the values ofRefCrit andAltCritwill be
assumed to be in logarithmic scale for the inference model:

log(RefCriti) = β0 + β1log(AltCriti) + εi (5)

We note that, by taking exponentials, the regression model
in the original scale is polynomial with multiplicative errors:

RefCriti = eβ0AltCritβ1

i e
εi (6)

Model verification Previous to any kind of inference, it
is mandatory to verify that the estimated parameters make
sense. That is, whether it really exists a linear relation be-
tween x and y. By the Gauss-Markov theorem, such linear
relation can be statistically checked using the following T-
test (Newbold et al., 2007)

H0 : β1 = 0 H1 : β1 6= 0

where a p−value close to zero (below α) ensures the valid-
ity of the linear model with a confidence (1− α)100%.

Prediction Model
In order to predict the values of RefCrit from the values
achieved by AltCrit, we use the regression prediction in-
tervals (Newbold et al., 2007):

PI(x0) = [LPI(x0), UPI(x0)]



since, for each x = x0, they provide ranges for y at a given
confidence level 1 − α. That is, given x0, the values of the
response y are within LPI(x0) ≤ y ≤ UPI(x0) in (1 −
α)100% of the cases.

Given x0 = AltCrit0, the confidence interval at a confi-
dence level (1-α) predicting RefCrit is given by:

PI(x0) = [LPI(x0), UPI(x0)] =

= [ŷ0 + tα/2SR
√
1 + h0, ŷ0 − tα/2SR

√
1 + h0] (7)

for tα/2 the value of a T-Student distribution with N − 2
degrees of freedom having a cumulative probability equal to
α/2 and:

h0 = (1 x0)(X
TX)−1

(
1
x0

)
= a0 + a1x0 + a2x20

The exponential of PI already provides (with confidence
1−α) an upper bound for the accuracy of EA solution given
EA current state. In order to obtain the upper bound for
AltCrit ensuring a given accuracy UPI(x0), it suffices to
find the value x0 that solves:

ŷ0 + tα/2SR
√

1 + h0 = UPI(x0) (8)

Using the expressions for ŷ0 and h0 in (8) and solving for
x0, we obtain:

x0 =
2b0b1 − t2α/2S

2
Ra1 − 2b1UPI(x0) +

√
D

2(t2α/2S
2
Ra2 − b21)

(9)

where the discriminant is given by:

D = (t2α/2S
2
Ra1 − 2b0b1 + 2b1UPI(x0))

2−

− 4(t2α/2S
2
Ra2 − b21)(t2α/2S

2
R(a0 + 1)−

− b20 + 2UPI(x0)b0 − UPI(x0)2)

By taking exponentials from (9) we get the upper bound for
AltCrit.

Experimental Settings
In this study we have compared the predictive capability
of the following distribution-based measures given at the
beginning of the previous Section: MxD, MxDQuick and
StdQuick. We have used p = 30% of the population for
computing Quick scores. We have considered seven well-
known test functions (Digalakis and Margaritis, 2002) hav-
ing a minimum at zero:

1. Esphere:

f1(x) =

n∑
i=1

x2i

2. Rosenbrock:

f2(x) =

n−1∑
i=1

[100(xi+1 − x2i )2 + (xi − 1)2]

3. Rastrigin:

f3(x) =

n∑
i=1

[x2i − 10 cos(2πxi + 10)]

4. Ackley:

f5(x) = 20+ e− 20e−0.2
√

1
2

∑n
i=1 x

2
i − e 1

2

∑n
i=1 cos(2πxi)

5. GoldstenPrice:

f6(x) = (1 + (x1 + x2 + 1)2.

(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)).

(30 + (2x1 − 3x2)
2.

(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22))

6. Easom:

f7(x) = − cosx1. cosx2.
exp(−((x1 − π)2 + (x1 − π)2))

We have used a Differential Evolution (DE) technique for
the minimization task. Differential evolution is a real param-
eter encoding evolutionary algorithm for global optimiza-
tion over continuous spaces (Storn and Price, 1997; Das and
Konar, 2005). In this paper, we use the 3-parameter DE1
scheme (Storn and Price, 1997) for solving DE. For a real
search space of dimension D, the population is randomly
initialized with ND vectors (for ND the first algorithm pa-
rameter). Each vector v in the population is evolved by mu-
tation and recombination operators. Given a mutation rate
F ∈ [0, 2] (second parameter of the algorithm), the mutation
operator produces a new vector vm by adding a vector dif-
ference of two randomly chosen population vectors v1 and
v2 to another randomly chosen vector v3:

vm = v1 + F (v2− v3)

For the recombination step, a new vector vf is created from
the mutation vector by means of a combination rate CR
(third parameter of the algorithm) as follows:

vfi =

{
vmi if ri < CR or i = k
vi otherwise

for vfi the i-th component of vf and ri ∈ [0, 1] a random
number and k a random number uniformly distributed in
[1, D]. Finally a selection operator is applied. The vector
vf and the initial vector v are compared and the vector that
better fits the objective function is selected and remains in
the next population. This process is iteratively repeated un-
til a stopping criterion is reached. Following the literature
(Das and Konar, 2005), we have chosen the following val-
ues for DE parameters: D=2, ND=20, F=0.9, CR=0.5. For



Figure 2: Scattered plots for Rastringin test function and 10 different runs of DE.

each test function, we have executed 100 trails of the algo-
rithm during 10.000 iterations each one.

For each test function and alternative quantity, two differ-
ent experiments have been carried out:

1. Model Assessment. The suitability and accuracy of the
linear model in logarithmic scale has been assessed by
the T-test on the regression coefficients, as well as, the
analysis of the residuals variance (SR).

2. Model Prediction. In order to assess the prediction capa-
bilities of each model two different experiments have been
addressed. On one hand, we have explored the relation be-
tweenRefCrit andAltCrit by analyzing the confidence
intervals of the regression coefficients. On the other hand,
we have compared the prediction intervals across the three
distribution-based quantities.

Experiments and Results
Model Assessment
Figure 2 shows scattered plots associated to the regression
model for the Rastringin test function. The y axis represents
RefCrit values and the x axis each of the alternative quan-
tities (from left to right MxD, MxDQuick and StdQuick.
Each plot shows 10 different runs marked with distinct col-
ors and markers. For all alternative quantities, we observe
a uniform behavior across DE executions, which present the
same linear pattern with a small variation.

Table 1 reports the estimation of the model parameters
(the regression coefficients β̂0, β̂1 and the residual variance
SR) and the the p-value of the model verification T-test. We
report values for each test function (rows) and alternative
quantity (columns). For all cases, there is a clear linear rela-
tion between accuracy and the alternative quantities (with p
close to the working precision). Besides the goodness-of-fit
is excellent, given that SR is extremely small compared to
the variable ranges (see fig. 2).

Concerning the relation between the two variables, it is
worth noticing two aspects. Firstly, we observe that the es-
timated slope β̂1 is close to 1 for all cases. This implies
that the relation in logarithmic scale is a translation of the
identity and the regression model in the original scale is also
linear. Secondly, the constant coefficients β̂0 are sorted as
follows:

β̂0(MxD) ≤ β̂0(MxDQuick) ≤ 0 ≤ β̂0(StdQuick)

The above commented points indicate that there might be
the following tendency:

StdQuick ≤ RefCrit ≤MxDQuick ≤MxD

This already suggests that the value of maximum distances
itself might guarantee an upper bound for the EA accuracy.
In order to really confirm such hypothesis, we should ana-
lyze the prediction intervals.

Model Prediction
Figure 3 shows the prediction intervals for the 6 test func-
tions. Each plot shows the prediction interval for all al-
ternative quantities, as well as, the identity line (solid line)
for a better visual comparison between AltCrit prediction
and RefCrit values. The alternative quantity can substi-
tute RefCrit in the measure that the identity line is within
the range given by the prediction interval. This is the case
for quantities based on maximum distances. In the case of
StdQuick the predicted values are above the reference iden-
tity line. This implies that StdQuick and RefCrit can not
be directly swapped and, thus, we need the upper bound
given in (9) for predicting RefCrit values.

Table 2 reports the upper bounds for each alternative
quantity ensuring a given accuracy for RefCrit. For each
test function (rows), we report values for two accuracies
10−6 and 10−9. As suggested by the plots in fig. 3, for Ras-
trigin, Ackley and Easom test functions, the upper bound for
MxD is almost equal to the accuracies 10−6 and 10−9. This



MxD MxDQuick StdQuick
p b1 b0 SR p b1 b0 SR p b1 b0 SR

Esfere ≤ 10−32 1.000 -0.487 0.12 ≤ 10−32 1.000 -0.183 0.05 ≤ 10−32 1.000 0.685 0.03
Rosenbrock ≤ 10−32 1.002 -0.478 0.16 ≤ 10−32 1.002 -0.122 0.09 ≤ 10−32 1.003 0.761 0.05

Rastrigin ≤ 10−32 0.996 -0.557 0.07 ≤ 10−32 1.006 -0.207 0.06 ≤ 10−32 1.007 0.686 0.03
Ackley ≤ 10−32 1.000 -0.487 0.07 ≤ 10−32 1.004 -0.148 0.06 ≤ 10−32 1.004 0.725 0.03

GoldstenPrice ≤ 10−32 0.998 -0.504 0.16 ≤ 10−32 1.001 -0.127 0.07 ≤ 10−32 1.002 0.804 0.05
Easom ≤ 10−32 1.001 -0.484 0.05 ≤ 10−32 1.011 -0.143 0.04 ≤ 10−32 1.011 0.766 0.03

Table 1: Model fitting scores

Figure 3: Prediction intervals

is also the case for Easom test function and MxDQuick. For
the remaining cases, MxD and MxDQuick upper bounds
are a little lower (though still comparable). We would like
to note that this does not contradict the swapability of the
two quantities. The upper bound condition requires that
RefCrit equals UPI . This is a stronger condition than
the swapability one, which just requires RefCrit ≤ UPI .
Concerning StdQuick, its upper bounds are clearly lower (a
40% at most) than the two accuracies. This confirms that

StdQuick and RefCrit are not directly swapable.

Conclusions and Future work
In real-world problems (which have unknown optimums) it
is mandatory to design a termination condition for EA en-
suring stabilization close to the unknown optimum. As far
as we know, this is the first work addressing EA termina-
tion condition in terms of statistical inference. In this con-
text, we have explored to what extend a reference quantity



MxD MxDQuick StdQuick
10−6 8.3 · 10−7 7.5 · 10−7 3.5 · 10−7

Esfere 10−9 8.3 · 10−10 7.5 · 10−10 3.5 · 10−10

10−6 7.5 · 10−7 6.4 · 10−7 3.1 · 10−7

Rosenbrock 10−9 7.6 · 10−10 6.5 · 10−10 3.2 · 10−10

10−6 9.8 · 10−7 8.4 · 10−7 4.0 · 10−7

Rastrigin 10−9 9.5 · 10−10 8.7 · 10−10 4.2 · 10−10

10−6 9.7 · 10−7 7.6 · 10−7 3.5 · 10−7

Ackley 10−9 9.7 · 10−10 7.8 · 10−10 3.6 · 10−10

10−6 7.3 · 10−7 7.0 · 10−7 3.0 · 10−7

GoldstenPrice 10−9 7.2 · 10−10 7.0 · 10−10 3.1 · 10−10

10−6 1.0 · 10−6 8.9 · 10−7 3.9 · 10−7

Easom 10−9 1.1 · 10−9 9.6 · 10−10 4.2 · 10−10

Table 2: Upper-bound ensuring a given accuracy of EA

(not available in real-world problems) measuring EA accu-
racy (RefCrit) can be substituted by an alternative quantity
(AltCrit) computed from EA population.

According to our experiments on several known test func-
tions, there is a strong (almost ideal) linear relation be-
tween distribution-based quantities (MxD, MxDQuick and
StdQuick) and the distance to the optimum. This allows
analyzing the prediction capabilities of each distribution-
based quantity by means of the regression prediction inter-
vals. From our analysis, we conclude that quantities based
on maximum distances (MxD, MxDQuick) have the high-
est concordance to EA accuracy and, thus, can substitute it
as termination condition. Given that MxDQuick is compu-
tationally faster than MxD, it is the best candidate for termi-
nating EA in real-world problems.

We consider that there are some issues that should be fur-
ther developed. The test functions used are a small set of
benchmarking data sets (we cover two out of the five cat-
egories described in (Hansen et al., 2010)) and only 2-D
problems have been solved. Enlarging the test function data
set including groups of functions with specific key features
(Hansen et al., 2010) is work currently under development.
However, the functions used include three properties (mul-
timodality, global structure and scalability) reported in a re-
cent study (Mersmann et al., 2010) to have a high influence
in the performance of EA’s. Regarding size, although it defi-
nitely influences convergence rate (more iterations of EA are
required (Hansen et al., 2010)), this is independent of the re-
lationship between RefCrit and AltCrit. Thus, size is not a
limitation for the prediction model, which links convergence
rate with population stability.

In this study we have restricted to DE algorithm. We are
currently enlarging EA methods in order to cover existing
EA paradigms: genetic algorithms (Goldberg and Richard-
son, 1987), evolutionary strategies (Beyer and Schwefel,
2002), particle Swarm optimization (Barrera and Coello,
2009), among others. Nevertheless, we do not expect any

significant changes in our conclusions since DE already
presents the main features of EA (Ronkkonen, 2009).

Finally, in our experimental setting test functions have
been studied separately. We consider that the influence of
the test function should be taken into account, so that the in-
ference can be done independently of the function features.
This will be studied by using generalized regression models
including random effects (Lee et al., 2006) modelling the
impact of the test function group.
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tics Service at the Universitat Autonoma de Barcelona for
his advise.

References
Arnold, S. (1997). The theory of linear models and multivariate

observations. Wiley.

Ashish, S.and Srivastava, M. (1990). Regression analysis. Theory,
methods and applications. Springer-Verlag.
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