toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (down) Debora Gil; Petia Radeva; Fernando Vilariño edit   pdf
isbn  openurl
  Title Anisotropic Contour Completion Type Conference Article
  Year 2003 Publication Proceedings of the IEEE International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this paper we introduce a novel application of the diffusion tensor for anisotropic image processing. The Anisotropic Contour Completion (ACC) we suggest consists in extending the characteristic function of the open curve by means of a degenerated diffusion tensor that prevents any diffusion in the normal direction. We show that ACC is equivalent to a dilation with a continuous elliptic structural element that takes into account the local orientation of the contours to be closed. Experiments on contours extracted from real images show that ACC produces shapes able to adapt to any curve in an active contour framework. 1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Barcelona, Spain Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-7803-7751-6 Medium  
  Area Expedition Conference  
  Notes IAM;MV;MILAB;SIAI Approved no  
  Call Number IAM @ iam @ GRV2003 Serial 1539  
Permanent link to this record
 

 
Author (down) Debora Gil; Oriol Rodriguez; Josepa Mauri; Petia Radeva edit  openurl
  Title Statistical descriptors of the Myocardial perfusion in angiographic images Type Conference Article
  Year 2006 Publication Proc. Computers in Cardiology Abbreviated Journal  
  Volume Issue Pages 677-680  
  Keywords Anisotropic processing; intravascular ultrasound (IVUS); vessel border segmentation; vessel structure classification.  
  Abstract Restoration of coronary flow after primary percutaneous coronary intervention in acute myocardial infarction does not always correlate with adequate myocardial perfusion. Recently, coronary angiography has been used to assess microcirculation integrity (Myocardial BlushAnalysis, MBA). Although MBA correlates with patient prognosis there are few image processing methods addressing objective perfusion quantification. The goal of this work is to develop statistical descriptors of the myocardial dyeing pattern allowing objective assessment of myocardial perfusion. Experiments on healthy right coronary arteries show that our approach allows reliable measurements without any specific image acquisition protocol.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRR2006 Serial 1528  
Permanent link to this record
 

 
Author (down) Debora Gil; Oriol Ramos Terrades; Raquel Perez edit   pdf
openurl 
  Title Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution Type Conference Article
  Year 2020 Publication Women in Geometry and Topology Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Barcelona; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; DAG; 600.139; 600.145; 600.121 Approved no  
  Call Number Admin @ si @ GRP2020 Serial 3473  
Permanent link to this record
 

 
Author (down) Debora Gil; Oriol Ramos Terrades; Elisa Minchole; Carles Sanchez; Noelia Cubero de Frutos; Marta Diez-Ferrer; Rosa Maria Ortiz; Antoni Rosell edit   pdf
url  openurl
  Title Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer Type Conference Article
  Year 2017 Publication 6th Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging Abbreviated Journal  
  Volume 10550 Issue Pages 151-159  
  Keywords  
  Abstract Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.

The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.

We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.
 
  Address Quebec; Canada; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CLIP  
  Notes IAM; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ GRM2017 Serial 2957  
Permanent link to this record
 

 
Author (down) Debora Gil; Jaume Garcia; Ruth Aris; Guillaume Houzeaux; Manuel Vazquez edit   pdf
openurl 
  Title A Riemmanian approach to cardiac fiber architecture modelling Type Conference Article
  Year 2009 Publication 1st International Conference on Mathematical & Computational Biomedical Engineering Abbreviated Journal  
  Volume Issue Pages 59-62  
  Keywords cardiac fiber architecture; diffusion tensor magnetic resonance imaging; differential (Rie- mannian) geometry.  
  Abstract There is general consensus that myocardial fiber architecture should be modelled in order to fully understand the electromechanical properties of the Left Ventricle (LV). Diffusion Tensor magnetic resonance Imaging (DTI) is the reference image modality for rapid measurement of fiber orientations by means of the tensor principal eigenvectors. In this work, we present a mathematical framework for across subject comparison of the local geometry of the LV anatomy including the fiber architecture from the statistical analysis of DTI studies. We use concepts of differential geometry for defining a parametric domain suitable for statistical analysis of a low number of samples. We use Riemannian metrics to define a consistent computation of DTI principal eigenvector modes of variation. Our framework has been applied to build an atlas of the LV fiber architecture from 7 DTI normal canine hearts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Swansea (UK) Editor Nithiarasu, R.L.R.V.L.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CMBE  
  Notes IAM Approved no  
  Call Number IAM @ iam @ FGA2009 Serial 1520  
Permanent link to this record
 

 
Author (down) Debora Gil; Jaume Garcia; Mariano Vazquez; Ruth Aris; Guilleaume Houzeaux edit   pdf
isbn  openurl
  Title Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function Type Conference Article
  Year 2008 Publication 8th World Congress on Computational Mechanichs (WCCM8) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Left Ventricle, Electromechanical Models, Image Processing, Magnetic Resonance.  
  Abstract Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models [1] consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality [2]. In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp [3].
We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment.
The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted.
The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have
Figure 1: Scheme for the Left Ventricle Patient-Sensitive Model.
computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.
 
  Address Venice; Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9788496736559 Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GGV2008b Serial 993  
Permanent link to this record
 

 
Author (down) Debora Gil; Jaume Garcia; Manuel Vazquez; Ruth Aris; Guillaume Houzeaux edit   pdf
url  openurl
  Title Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function Type Conference Article
  Year 2008 Publication 8th World Congress on Computational Mechanichs (WCCM8)/5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Left Ventricle; Electromechanical Models; Image Processing; Magnetic Resonance.  
  Abstract Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality . In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp. We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment. The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted. The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Venezia (Italia) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN B-31470-08 ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGV2008c Serial 1521  
Permanent link to this record
 

 
Author (down) Debora Gil; Jaume Garcia; Aura Hernandez-Sabate; Enric Marti edit   pdf
url  doi
openurl 
  Title Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy Type Conference Article
  Year 2010 Publication 8th Medical Imaging Abbreviated Journal  
  Volume 7623 Issue 762304 Pages 304  
  Keywords  
  Abstract Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SPIE  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGH2010a Serial 1522  
Permanent link to this record
 

 
Author (down) Debora Gil; Guillermo Torres; Carles Sanchez edit  openurl
  Title Transforming radiomic features into radiological words Type Conference Article
  Year 2023 Publication IEEE International Symposium on Biomedical Imaging Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pòster  
  Address Cartagena de Indias; Colombia; April 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISBI  
  Notes IAM Approved no  
  Call Number Admin @ si @ GTS2023 Serial 3952  
Permanent link to this record
 

 
Author (down) Debora Gil; Guillermo Torres edit   pdf
openurl 
  Title A multi-shape loss function with adaptive class balancing for the segmentation of lung structures Type Conference Article
  Year 2020 Publication 34th International Congress and Exhibition on Computer Assisted Radiology & Surgery Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Virtual; June 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CARS  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GiT2020 Serial 3472  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: