toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jaume Garcia; Francesc Carreras; Sandra Pujades; Debora Gil edit   pdf
doi  openurl
  Title Regional motion patterns for the Left Ventricle function assessment Type Conference Article
  Year 2008 Publication Proc. 19th Int. Conf. Pattern Recognition ICPR 2008 Abbreviated Journal  
  Volume Issue Pages 1-4  
  Keywords  
  Abstract Regional scores (e.g. strain, perfusion) of the Left Ventricle (LV) functionality are playing an increasing role in the diagnosis of cardiac diseases. A main limitation is the lack of normality models for complementary scores oriented to assessment of the LV integrity. This paper introduces an original framework based on a parametrization of the LV domain, which allows comparison across subjects of local physiological measures of different nature. We compute regional normality patterns in a feature space characterizing the LV function. We show the consistency of the model for the regional motion on healthy and hypokinetic pathological cases  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GCP2008 Serial 1510  
Permanent link to this record
 

 
Author Jaume Garcia; David Rotger; Francesc Carreras; R.Leta; Petia Radeva edit   pdf
doi  isbn
openurl 
  Title Contrast echography segmentation and tracking by trained deformable models Type Conference Article
  Year 2003 Publication Proc. Computers in Cardiology Abbreviated Journal  
  Volume 30 Issue Pages 173-176  
  Keywords  
  Abstract The objective of this work is to segment the human left ventricle myocardium (LVM) in contrast echocardiography imaging and thus track it along a cardiac cycle in order to extract quantitative data about heart function. Ultrasound images are hard to work with due to their speckle appearance. To overcome this we report the combination of active contour models (ACM) or snakes and active shape models (ASM). The ability of ACM in giving closed and smooth curves in addition to the power of the ASM in producing shapes similar to the ones learned, evoke to a robust algorithm. Meanwhile the snake is attracted towards image main features, ASM acts as a correction factor. The algorithm was tested independently on 180 frames and satisfying results were obtained: in 95% the maximum difference between automatic and experts segmentation was less than 12 pixels.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Centre de Visió per Computador – Dept. Informàtica, UAB Edifici O – Campus UAB, 08193 Bellater Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0276-6547 ISBN 0-7803-8170-X Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRC2003 Serial 1512  
Permanent link to this record
 

 
Author M.Gomez; Josefina Mauri; Eduard Fernandez-Nofrerias; Oriol Rodriguez-Leon; Carme Julia; Debora Gil; Petia Radeva edit  openurl
  Title Reconstrucción de un modelo espacio-temporal de la luz del vaso a partir de secuencias de ecografía intracoronaria Type Conference Article
  Year 2002 Publication XXXVIII Congreso Nacional de la Sociedad Española de Cardiología. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS;MILAB Approved no  
  Call Number IAM @ iam @ GMF2002d Serial 1516  
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Ruth Aris; Guillaume Houzeaux; Manuel Vazquez edit   pdf
openurl 
  Title A Riemmanian approach to cardiac fiber architecture modelling Type Conference Article
  Year 2009 Publication 1st International Conference on Mathematical & Computational Biomedical Engineering Abbreviated Journal  
  Volume Issue Pages 59-62  
  Keywords cardiac fiber architecture; diffusion tensor magnetic resonance imaging; differential (Rie- mannian) geometry.  
  Abstract There is general consensus that myocardial fiber architecture should be modelled in order to fully understand the electromechanical properties of the Left Ventricle (LV). Diffusion Tensor magnetic resonance Imaging (DTI) is the reference image modality for rapid measurement of fiber orientations by means of the tensor principal eigenvectors. In this work, we present a mathematical framework for across subject comparison of the local geometry of the LV anatomy including the fiber architecture from the statistical analysis of DTI studies. We use concepts of differential geometry for defining a parametric domain suitable for statistical analysis of a low number of samples. We use Riemannian metrics to define a consistent computation of DTI principal eigenvector modes of variation. Our framework has been applied to build an atlas of the LV fiber architecture from 7 DTI normal canine hearts.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Swansea (UK) Editor Nithiarasu, R.L.R.V.L.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CMBE  
  Notes IAM Approved no  
  Call Number IAM @ iam @ FGA2009 Serial 1520  
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Manuel Vazquez; Ruth Aris; Guillaume Houzeaux edit   pdf
url  openurl
  Title Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function Type Conference Article
  Year 2008 Publication 8th World Congress on Computational Mechanichs (WCCM8)/5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Left Ventricle; Electromechanical Models; Image Processing; Magnetic Resonance.  
  Abstract Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality . In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp. We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment. The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted. The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Venezia (Italia) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN B-31470-08 ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGV2008c Serial 1521  
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Aura Hernandez-Sabate; Enric Marti edit   pdf
url  doi
openurl 
  Title Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy Type Conference Article
  Year 2010 Publication 8th Medical Imaging Abbreviated Journal  
  Volume 7623 Issue 762304 Pages 304  
  Keywords  
  Abstract Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.  
  Address (up)  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SPIE  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGH2010a Serial 1522  
Permanent link to this record
 

 
Author Debora Gil; Oriol Rodriguez; Josepa Mauri; Petia Radeva edit  openurl
  Title Statistical descriptors of the Myocardial perfusion in angiographic images Type Conference Article
  Year 2006 Publication Proc. Computers in Cardiology Abbreviated Journal  
  Volume Issue Pages 677-680  
  Keywords Anisotropic processing; intravascular ultrasound (IVUS); vessel border segmentation; vessel structure classification.  
  Abstract Restoration of coronary flow after primary percutaneous coronary intervention in acute myocardial infarction does not always correlate with adequate myocardial perfusion. Recently, coronary angiography has been used to assess microcirculation integrity (Myocardial BlushAnalysis, MBA). Although MBA correlates with patient prognosis there are few image processing methods addressing objective perfusion quantification. The goal of this work is to develop statistical descriptors of the myocardial dyeing pattern allowing objective assessment of myocardial perfusion. Experiments on healthy right coronary arteries show that our approach allows reliable measurements without any specific image acquisition protocol.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRR2006 Serial 1528  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva; Josefina Mauri edit   pdf
openurl 
  Title Ivus Segmentation Via a Regularized Curvature Flow Type Conference Article
  Year 2002 Publication X Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2002 Abbreviated Journal  
  Volume Issue Pages 133-136  
  Keywords  
  Abstract Cardiac diseases are diagnosed and treated through a study of the morphology and dynamics of cardiac arteries. In- travascular Ultrasound (IVUS) imaging is of high interest to physicians since it provides both information. At the current state-of-the-art in image segmentation, a robust detection of the arterial lumen in IVUS demands manual intervention or ECG-gating. Manual intervention is a tedious and time consuming task that requires experienced observers, meanwhile ECG-gating is an acquisition technique not available in all clinical centers. We introduce a parametric algorithm that detects the arterial luminal border in in vivo sequences. The method consist in smoothing the sequences’ level surfaces under a regularized mean curvature flow that admits non-trivial steady states. The flow is based on a measure of the surface local smoothness that takes into account regularity of the surface curvature.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Saragossa, Espanya Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRM2002 Serial 1536  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva; Jordi Saludes; Josefina Mauri edit   pdf
url  openurl
  Title Automatic Segmentation of Artery Wall in Coronary IVUS Images: A Probabilistic Approach Type Conference Article
  Year 2000 Publication International Conference on Pattern Recognition Abbreviated Journal  
  Volume 4 Issue Pages 352-355  
  Keywords  
  Abstract Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRS2000a Serial 1537  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva; Jordi Saludes; Josefina Mauri edit   pdf
openurl 
  Title Automatic Segmentation of Artery Wall in Coronary IVUS Images: a Probabilistic Approach Type Conference Article
  Year 2000 Publication Proceedings of CIC’2000 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Massachussets Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIC  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRS2000 Serial 1538  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: