toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil edit   pdf
doi  isbn
openurl 
  Title A medial map capturing the essential geometry of organs Type Conference Article
  Year 2012 Publication ISBI Workshop on Open Source Medical Image Analysis software Abbreviated Journal  
  Volume Issue Pages 1691 - 1694  
  Keywords Medial Surface Representation, Volume Reconstruction,Geometry , Image reconstruction , Liver , Manifolds , Shape , Surface morphology , Surface reconstruction  
  Abstract (up) Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Accurate computation of one pixel wide medial surfaces is mandatory. Those surfaces must represent faithfully the geometry of the volume. Although morphological methods produce excellent results in 2D, their complexity and quality drops across dimensions, due to a more complex description of pixel neighborhoods. This paper introduces a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. Our experiments show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume  
  Address Barcelona,Spain  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1945-7928 ISBN 978-1-4577-1857-1 Medium  
  Area Expedition Conference ISBI  
  Notes IAM Approved no  
  Call Number IAM @ iam @ VGG2012a Serial 1989  
Permanent link to this record
 

 
Author Patricia Marquez;Debora Gil;Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title A Complete Confidence Framework for Optical Flow Type Conference Article
  Year 2012 Publication 12th European Conference on Computer Vision – Workshops and Demonstrations Abbreviated Journal  
  Volume 7584 Issue 2 Pages 124-133  
  Keywords Optical flow, confidence measures, sparsification plots, error prediction plots  
  Abstract (up) Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Florence, Italy, October 7-13, 2012 Editor Andrea Fusiello, Vittorio Murino ,Rita Cucchiara  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-33867-0 Medium  
  Area Expedition Conference ECCVW  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MGH2012b Serial 1991  
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Agnes Borras; F. Javier Sanchez; Frederic Perez; Marius G. Linguraru edit  openurl
  Title Computation and Evaluation of Medial Surfaces for Shape Representation of Abdominal Organs Type Conference Article
  Year 2011 Publication Workshop on Computational and Clinical Applications in Abdominal Imaging Abbreviated Journal  
  Volume 7029 Issue Pages 223-230  
  Keywords  
  Abstract (up) Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.  
  Address Nice, France  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor In H. Yoshida et al  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ABDI  
  Notes IAM; MV Approved no  
  Call Number VGB2011 Serial 2036  
Permanent link to this record
 

 
Author Albert Andaluz; Francesc Carreras; Cristina Santa Marta;Debora Gil edit   pdf
url  openurl
  Title Myocardial torsion estimation with Tagged-MRI in the OsiriX platform Type Conference Article
  Year 2012 Publication ISBI Workshop on Open Source Medical Image Analysis software Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Myocardial torsion (MT) plays a crucial role in the assessment of the functionality of the
left ventricle. For this purpose, the IAM group at the CVC has developed the Harmonic Phase Flow (HPF) plugin for the Osirix DICOM platform . We have validated its funcionalty on sequences acquired using different protocols and including healthy and pathological cases. Results show similar torsion trends for SPAMM acquisitions, with pathological cases introducing expected deviations from the ground truth. Finally, we provide the plugin free of charge at http://iam.cvc.uab.es
 
  Address Barcelona, Spain  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor Wiro Niessen (Erasmus MC) and Marc Modat (UCL)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISBI  
  Notes IAM Approved no  
  Call Number IAM @ iam @ ACS2012 Serial 1900  
Permanent link to this record
 

 
Author Jaume Garcia; Joel Barajas; Francesc Carreras; Sandra Pujades; Petia Radeva edit   pdf
doi  isbn
openurl 
  Title An intuitive validation technique to compare local versus global tagged MRI analysis Type Conference Article
  Year 2005 Publication Computers In Cardiology Abbreviated Journal  
  Volume 32 Issue Pages 29–32  
  Keywords  
  Abstract (up) Myocardium appears as a uniform tissue that seen in convectional Magnetic Resonance Images (MRI) shows just the contractile part of its movement. MR Tagging is a unique imaging technique that prints a grid over the tissue which moves according to the underlying movement of the myocardium revealing the true deformation of the cardiac muscle. Optical flow techniques based on spectral information estimate tissue displacement by analyzing information encoded in the phase maps which can be obtained using, local (Gabor) and global (HARP) methods. In this paper we compare both in synthetic and real Tagged MR sequences. We conclude that local method is slightly more accurate than the global one. On the other hand, global method is more efficient as it is much faster and less parameters have to be taken into account  
  Address Lyon (France)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-7803-9337-6 Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GBC2005 Serial 639  
Permanent link to this record
 

 
Author Andrew Nolan; Daniel Serrano; Aura Hernandez-Sabate; Daniel Ponsa; Antonio Lopez edit   pdf
openurl 
  Title Obstacle mapping module for quadrotors on outdoor Search and Rescue operations Type Conference Article
  Year 2013 Publication International Micro Air Vehicle Conference and Flight Competition Abbreviated Journal  
  Volume Issue Pages  
  Keywords UAV  
  Abstract (up) Obstacle avoidance remains a challenging task for Micro Aerial Vehicles (MAV), due to their limited payload capacity to carry advanced sensors. Unlike larger vehicles, MAV can only carry light weight sensors, for instance a camera, which is our main assumption in this work. We explore passive monocular depth estimation and propose a novel method Position Aided Depth Estimation
(PADE). We analyse PADE performance and compare it against the extensively used Time To Collision (TTC). We evaluate the accuracy, robustness to noise and speed of three Optical Flow (OF) techniques, combined with both depth estimation methods. Our results show PADE is more accurate than TTC at depths between 0-12 meters and is less sensitive to noise. Our findings highlight the potential application of PADE for MAV to perform safe autonomous navigation in
unknown and unstructured environments.
 
  Address Toulouse; France; September 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IMAV  
  Notes ADAS; 600.054; 600.057;IAM Approved no  
  Call Number Admin @ si @ NSH2013 Serial 2371  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; R.Mester; Aura Hernandez-Sabate edit   pdf
openurl 
  Title Local Analysis of Confidence Measures for Optical Flow Quality Evaluation Type Conference Article
  Year 2014 Publication 9th International Conference on Computer Vision Theory and Applications Abbreviated Journal  
  Volume 3 Issue Pages 450-457  
  Keywords Optical Flow; Confidence Measure; Performance Evaluation.  
  Abstract (up) Optical Flow (OF) techniques facing the complexity of real sequences have been developed in the last years. Even using the most appropriate technique for our specific problem, at some points the output flow might fail to achieve the minimum error required for the system. Confidence measures computed from either input data or OF output should discard those points where OF is not accurate enough for its further use. It follows that evaluating the capabilities of a confidence measure for bounding OF error is as important as the definition
itself. In this paper we analyze different confidence measures and point out their advantages and limitations for their use in real world settings. We also explore the agreement with current tools for their evaluation of confidence measures performance.
 
  Address Lisboa; January 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISAPP  
  Notes IAM; ADAS; 600.044; 600.060; 600.057; 601.145; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ MGM2014 Serial 2432  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title A Confidence Measure for Assessing Optical Flow Accuracy in the Absence of Ground Truth Type Conference Article
  Year 2011 Publication IEEE International Conference on Computer Vision – Workshops Abbreviated Journal  
  Volume Issue Pages 2042-2049  
  Keywords IEEE International Conference on Computer Vision – Workshops  
  Abstract (up) Optical flow is a valuable tool for motion analysis in autonomous navigation systems. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in real world sequences. This paper introduces a measure of optical flow accuracy for Lucas-Kanade based flows in terms of the numerical stability of the data-term. We call this measure optical flow condition number. A statistical analysis over ground-truth data show a good statistical correlation between the condition number and optical flow error. Experiments on driving sequences illustrate its potential for autonomous navigation systems.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Barcelona (Spain) Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ MGH2011 Serial 1682  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil ; Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title Error Analysis for Lucas-Kanade Based Schemes Type Conference Article
  Year 2012 Publication 9th International Conference on Image Analysis and Recognition Abbreviated Journal  
  Volume 7324 Issue I Pages 184-191  
  Keywords Optical flow, Confidence measure, Lucas-Kanade, Cardiac Magnetic Resonance  
  Abstract (up) Optical flow is a valuable tool for motion analysis in medical imaging sequences. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in medical sequences. This paper presents an error analysis of Lucas-Kanade schemes in terms of intrinsic design errors and numerical stability of the algorithm. Our analysis provides a confidence measure that is naturally correlated to the accuracy of the flow field. Our experiments show the higher predictive value of our confidence measure compared to existing measures.  
  Address Aveiro, Portugal  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication Editor  
  Language english Summary Language Original Title  
  Series Editor Campilho, Aurélio and Kamel, Mohamed Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-31294-6 Medium  
  Area Expedition Conference ICIAR  
  Notes IAM Approved no  
  Call Number IAM @ iam @ MGH2012a Serial 1899  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Lluis Albarracin; Daniel Calvo; Nuria Gorgorio edit   pdf
openurl 
  Title EyeMath: Identifying Mathematics Problem Solving Processes in a RTS Video Game Type Conference Article
  Year 2016 Publication 5th International Conference Games and Learning Alliance Abbreviated Journal  
  Volume 10056 Issue Pages 50-59  
  Keywords Simulation environment; Automated Driving; Driver-Vehicle interaction  
  Abstract (up) Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GALA  
  Notes ADAS;IAM; Approved no  
  Call Number HAC2016 Serial 2864  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: