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aura@cvc.uab.cat

Computer Vision Center, Campus UAB, Bellaterra, Barcelona

Abstract

Optical flow is a valuable tool for motion analysis in au-
tonomous navigation systems. A reliable application re-
quires determining the accuracy of the computed optical
flow. This is a main challenge given the absence of ground
truth in real world sequences. This paper introduces a mea-
sure of optical flow accuracy for Lucas-Kanade based flows
in terms of the numerical stability of the data-term. We
call this measure optical flow condition number. A statis-
tical analysis over ground-truth data show a good statisti-
cal correlation between the condition number and optical
flow error. Experiments on driving sequences illustrate its
potential for autonomous navigation systems.

1. Introduction
Analysis of sequence motion arises in computer vision

fields such as car driver assistance or autonomous naviga-
tion. To explore the properties of motion across image pix-
els, the computation of a dense flow field is mandatory.

Variational schemes are widespread powerful tools for
computing dense motion vectors. They compute motion by
finding the minimum of an energy functional [11] which
combines two terms: the data-term and the smoothness-
term. The data-term puts into correspondence one frame
with the following one. Existing approaches use either
the square of the original Optical Flow (OF) equation
[11, 16, 20] or a metric associated to the system of equations
provided by local techniques [8, 10, 6]. The smoothness-
term determines the global properties of the vector field
across the image.

There has been an increasing interest in developing
variational schemes for minimizing over-regularization and
keeping motion discontinuities [16, 17, 25, 20, 23, 26]. It
follows that modern techniques are suitable for detection
of unpredicted agents and occlusions in autonomous navi-
gation applications. However their application to decision
making in autonomous navigation systems might require

discarding those regions where OF is neither reliable nor ac-
curate. The most common way of measuring OF accuracy
is by computing its deviation from the true motion vector.
This suffices to quantify the overall performance, but it is
useless at locating areas of poor performance in real-time
application where no ground-truth is given.

The impact of poor performance is higher in local meth-
ods since they lack of a global regularizer. Thus, in early
times, some local methods defined confidence measures in
order to discard pixels where there is not enough informa-
tion for a reliable estimate [5, 21, 22, 19]. But for [21],
which uses the condition number [9], all of them base on
the determinant of the matrix of the system involved in the
computation of OF. Given that current variational schemes
are more stable under a local drop of the data-term per-
formance, the use of confidence measures has almost van-
ished. However, in dense flow fields we still need a confi-
dence measure to determine in which points the estimation
is reliable or not in the absence of ground truth. Since the
energy functional follows from adding the local integrand
for all pixels, in [8] they propose its evaluation at the com-
puted flow field for assessing local reliability. As far as we
know, this is the only confidence measure for variational
approaches.

A main concern for detecting non-reliable regions in
real-world sequences is that none of the above have cor-
related confidence measures with OF error. There are two
main sources of error: a deficient design of the algorithm
(ill-conditioned) and round-off numerical propagation er-
rors. The former can not be predicted from OF equations
and requires a thorough analysis of the algorithm proper-
ties. The latter can be analyzed using numerical stability
concepts [9].

In spite of its simplicity, Lucas-Kanade [14] achieves
successful results in a large range of applications such as car
driving assistance or navigation systems [7, 18, 24]. In this
paper we explore the main sources of error for frameworks
having a data-term based on Lucas-Kanade equations. We
also introduce a (local) confidence measure for such frame-
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works (variational [8] or not [14]). Our confidence mea-
sure assesses points with unbounded error by encapsulating
the conditions that ensure numerical accuracy of the data-
term. We also present a validation protocol (including the
design of synthetic data-bases and a statistical framework)
for checking the statistical correlation between the confi-
dence measure and the accuracy of the solutions to the local
systems. Experiments on our synthetic sequences and the
Middlebury database [2] show a good correlation between
errors and our confidence measure. Its benefits for predict-
ing the local reliability in autonomous navigation applica-
tions are illustrated on a driving assistance database [1].

The remains of the paper are organized as follows. In
Section 2 we describe our error analysis for Lukas-Kanade
schemes and present our confidence measure. Section 3
describes the experimental settings and section 4 the used
databases. In Section 5 we show the results of the experi-
ments and an application of the confidence measure to driv-
ing assistance sequences. Finally, in Section 6 there are the
conclusions and future work.

2. Error analysis of Lucas-Kanade based
schemes

The Lucas-Kanade (LK) approach [14] is based on the
assumption that OF keeps constant in a neighborhood of
each pixel of size σ. Under this assumption the approx-
imation of the OF is computed minimizing the following
function:

ELK(w) = ELK(u, v) = Kσ ∗
(
(Ixu+ Iyv + It)

2
)

(1)

where w = (u, v) denotes the optical flow, I an image se-
quence, subscripts denote partial derivatives (x and y denote
spatial derivatives and t temporal ones), ∗ the convolution
operator and Kσ a Gaussian kernel of standard deviation
σ. The minimum satisfies ∂uELK = 0 and ∂vELK = 0,
which gives the following system of equations:(

Kσ ∗ (I2x) Kσ ∗ (IxIy)
Kσ ∗ (IxIy) Kσ ∗ (I2y )

)
︸ ︷︷ ︸

ALK

(
u

v

)
=

(
−Kσ ∗ (IxIt)
−Kσ ∗ (IyIt)

)
︸ ︷︷ ︸

bLK

(2)
Notice that ALK is a symmetric matrix.

The LK approach can be formulated in global terms [8]
using the following variational framework:

ELKV (u, v) =

∫
ELK + α(|∇w|2) dxdy (3)

In order to avoid over-regularization in the flow field, the
following non-quadratic functional can be used:

ELKV (u, v) =

∫
ψ1(ELK) + αψ2(|∇w|2) dxdy (4)

for ψi(s2) = 2β2
i

√
1 + s2

β2
i

, where βi is a scaling parame-
ter. The minimum of the functional is computed by means
of the Euler-Lagrange system of equations:

1

α
ψ′1(ELK)Kσ∗(I2xu+ IxIyv + IxIt) =

div(ψ′2(|∇w|2)∇u)
1

α
ψ′1(ELK)Kσ∗(IxIyu+ I2yv + IyIt) =

div(ψ′2(|∇w|2)∇v) (5)

where ψ′i(s
2) = 1√

1+ s2

β2
i

for i = 1, 2. Notice that for large

values of βi, ψ′i(s
2) ≈ 1 and we recover the quadratic ap-

proach. If we write (5) in matrix form:

1

α
ψ′1(ELK)

[
ALK

(
u

v

)
− bLK

]
=

(
div
(
ψ′2(|∇w|2)∇u

)
div
(
ψ′2(|∇w|2)∇v

))
(6)

we recover LK local formulation given by (2).
Given that LK approaches solve the linear system given

by (2), we will determine their sources of errors by studying
the properties and numerical stability of the system.

2.1. Design Errors

An algorithm is accurate in the measure that it properly
models what has to be solved. Otherwise, its solution (even
if it has not numerical errors) differs from the problem so-
lution. In the case of LK there are two main aspects that
might distort its description of motion.

On the one hand, LK technique is based on the assump-
tion that OF keeps constant in a neighborhood of each pixel.
For that, at those locations where there is a collision of dif-
ferent motions, LK can not properly model OF.

On the other hand, the matrix ALK is the structure ten-
sor or second moment matrix [12] and it describes the image
local geometry by means of its eigenvalue decomposition.
At points with a (unique) well defined orientation, the ma-
trix might be singular (i.e. it is not invertible), so that, the
system is undetermined. This might be the case at straight
image contours, specially at horizontal and vertical image
edges and flat regions. In contrast, at points with two or
more different orientations, the system of equations has a
unique solution. The typical case is at corners and junc-
tions. Therefore, LK approach, can not solve properly the
aperture problem neither in edges nor in flat regions.

2.2. Error propagation

Errors in the output data that come from errors in the
input of the algorithm are called propagation errors. In our
case, the error given by the input data is produced by the
acquisition of the sequences.
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The condition number [9] associated to a system of equa-
tions Ax = b, gives an upper bound of the error of the so-
lution in relation with the error given in b. Given a square
matrix A, if e is the error in b, then the error in the solution
x = A−1b is A−1e. The relative error in the solution to the
relative error in b is the mentioned condition number and
determines the error propagation. It is defined as follows:

K(A) =
‖A−1e‖/‖A−1b‖
‖e‖/‖b‖

= ‖A‖‖A−1‖ (7)

for ‖ · ‖ a matrix norm. If we consider the L2 norm and the
matrix A is symmetric, the condition number simplifies to:

K(A) =
λmax
λmin

(8)

where λmax and λmin are the maximum and minimum
eigenvalues of A, respectively.

The condition number range is [1,∞). For large val-
ues the propagation of input errors is bad (ill-conditioned
problem), whereas for low values (near to one) errors in
the output compare to input errors and the problem is well-
conditioned. In other words, if the condition number is
large, then, the output error is not bounded and it can take
any value (errors comparable with the input data errors or
higher errors in the output data). Meanwhile, if the condi-
tion number is close to one, the error of the output data is
comparable with the error of the input data, and thus, the
output data is reliable.

Since the condition number is not bounded, we propose
the following equivalent measure:

κ(A) =

(
λmin
λmax

)2

(9)

Notice that now, the range is (0, 1]. And thus, for small val-
ues the error propagation might be large, whereas for values
near to 1 the error propagation will be small. We note that
with this formulation, singularity of the system (2) cancels
κ, so that, one of the design errors of LK is also under con-
trol. In order to avoid indetermination values due to a 0/0
division, formula (9) is computed setting to zero such cases.

Since the LK matrix is symmetric, we propose κ(ALK)
given by (9) as a confidence measure that correlates with
the accuracy.

3. Experimental settings

We present a novel statistical analysis to assess the corre-
lation between the confidence measure and the optical flow
accuracy. We also compare our confidence measure against
the confidence measure proposed by [8]. For that, the fol-
lowing experiments have been performed:

• Error prediction capabilities for local LK: The goal
of this experiment is to validate that the confidence
measure is correlated with the accuracy of LK ap-
proach.

• Error prediction capabilities for variational LK:
The goal of this experiment is to validate that after em-
bedding LK into a variational framework confidence
measures still correlate with accuracy.

• Application to autonomous navigation: We also
present an application to driving assistance showing
the computed OF and the confidence measure.

The gaussian kernel used for either local LK and varia-
tional LK is the following:

Kσ =
1

25

 1 3 1
3 9 3
1 3 1

 (10)

For the variational LK we have used the implementation de-
veloped by [13] which is available at [3]. This implementa-
tion defines ψi(s2) =

√
β2
i + s2. Note that for this ψi we

have a non-quadratic variational LK. The parameters are set
to α = 0.02 and βi = 0.001.

In order to measure the accuracy between the ground-
truth and the computed OF we have computed the End-
Point Error (EE), defined as follows [4]:

EE = ‖wC − wGT ‖2 (11)

where wC is the computed OF and wGT is the ground-truth
of the OF.

The confidence measure κ is correlated with EE if they
have a decreasing dependency. Such dependency is statisti-
cally explored by means of the correlation betweenEE and
κ, considered as random variables. Since the correlation
might be non linear, we consider the Spearman correlation
coefficient, ρ [15]. The Spearman correlation coefficient
takes values in [−1, 1], indicating a maximum positive cor-
relation for value 1, and a maximum negative one for value
-1. In order to check if the dependency is significant we
have used a unilateral hypothesis test [15]:

TP1 :

{
H0 : ρ ≥ 0
H1 : ρ < 0

(12)

Rejecting the null hypothesis, ensures, statistically, a de-
creasing dependency.

We have also explored the correlation of the confidence
measure reported in [8] given by point-wise evaluation of
the integrand ofELKV at the solution. In this case, (ELKV )
is correlated with the EE if they have an increasing depen-
dency. And it is because for small values of ELVK we have
properly minimized the functional and thus the error might
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be small. For that, the Spearman correlation coefficient is
computed by means of the following unilateral hypothesis
test:

TP2 :

{
H0 : ρ ≤ 0
H1 : ρ > 0

(13)

Rejecting the null hypothesis, ensures, statistically, an in-
creasing dependency.

4. Databases
In order to carry out our experiments the following

databases have been used.

4.1. Synthetic Database

In order to analyze the relation between the proposed
confidence measure and the accuracy of LK we need a se-
quence with ground truth and high resolution. In the fash-
ion of [5], we have created a new synthetic database. This
database has a displacement of one pixel and it contains
three textured images (with different geometric shapes)
with a moving object. We consider three types of motion:

• Homogenous Motion(H): The same motion for the
whole image.

• Single Motion (M): The geometric shape moves over
an static background.

• Double Motion (D): The geometric shape and the
background move in different directions.

For each sequence we have considered eight different move-
ments ((cosθ, sinθ), θ = 0o, 45o, ..., 270o, 315o), in combi-
nations of two elements for double motion sequences.

Notice that with this database we ensure optimal condi-
tions for local LK and, for variational LK we suppress any
errors due to temporal warping schemes. Also notice that
this is the base-line best performance.

4.2. Middlebury Database

In order to see if we still having the same relation with
the error and the confidence measure in the variational
framework and using warping techniques we use the Mid-
dlebury database [2], which contains real-life and synthetic
sequences with ground-truth. Those sequences can contain
displacements up to 20 pixels per frame. The sequences
contain several independently moving objects, thin struc-
tures, shadows and foreground-background transitions.

4.3. Endepa Database

In order to apply the confidence measure into real-life
sequences, we use the Endepa project database [1]. This
database contains real-world car sequences with no ground
truth. The images are taken from a moving car. Therefore,

Synthetic Database

(a) Seq1 (b) Seq2 (c) Seq3
Middlebury Database

(d) Grove2 (e) RubberWhale (f) Urban2
Endepa Database

(g) ConstructionSite (h) CrazyTurn (i) InternOnBike

Figure 1: Representative samples of each database.

at the outskirts of the image the temporal resolution is low,
while at the center of the image the resolution is rather high.

Figure 1 shows representative samples of each database:
synthetic in first row, Middlebury in central row and Endepa
in the last row.

5. Results

5.1. Error prediction capabilities for local LK

By the temporal resolution of Middlebury and En-
depa databases (too low for a standard non-pyramidal LK
scheme), this experiment can only be performed in our syn-
thetic database.

In figure 2 we plot the confidence measure κ versus the
end-point-error EE for local LK for 3 representative syn-
thetic sequences: homogeneous motion for sequence 1 in
fig. 2(a), single motion for sequence 2 in fig. 2(b) and dou-
ble motion for sequence 3 in fig. 2(c). For each plot, point
clouds show values for each type of sequence considering
all movements. Since we expect a decreasing dependency
between κ and EE, the plots should draw an hyperbola. That
is, we expect high values of EE for values of κ close to 0,
while low values of EE for values of κ close to 1. For all
cases, we observe a clear decreasing dependency between κ
and EE.
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H M D
κ κ κ

ρ p− val ρ p− val ρ p− val
Seq1 -0.56 0.00 -0.62 0.00 -0.59 0.00
Seq2 -0.57 0.00 -0.64 0.00 -0.63 0.00
Seq3 -0.64 0.00 -0.58 0.00 -0.63 0.00

Table 1: Spearman test TP1 for local LK considering the
Synthetic database.

Table 1 shows the Spearman coefficient ρ and the
p−value for the unilateral test TP1. As expected, the
Spearman correlation coefficient achieves negative values
and p−values are at working precision 10−88. These
p−values show that the decreasing dependency is statisti-
cally significant. Still, since ρ is not −1, there are some
points where the error is independent to the properties of
LK definition. Such errors might be caused due to inherent
errors in the sequence design. Since the synthetic sequences
are created interpolating one frame with a specific motion,
the motion of the sequence in some points might not be ex-
act.

5.2. Error prediction capabilities for variational LK

In this case we have considered our synthetic sequences,
as well as, the Middlebury database and we have compared
to evaluation of the integrand.

In figure 3 we plot the confidence measures κ andELKV
versus the end-point-error EE for variational LK (with no
warping) for the same representative synthetic sequences
shown in the previous section. Although, the smoothness
term of the variational distorts the decreasing pattern of
fig. 2, we still have a clear decreasing dependency between
κ and EE. However, this is not the case between ELKV
and EE, which plots do not present a defined dependency
(neither increasing nor decreasing).

In figure 4 we plot the confidence measures κ andELKV
versus the end-point-error EE for variational LK (with
warping) considering the representative sequences of the
Middlebury database. We have chosen a sequence with
non-linear deformation (Dimetrodon in first columns), a se-
quence with textured objects and linear motion (Grove2 in
second columns) and a sequence with non-textured objects
and linear motion (Urban3 in third columns). Equivalent
to the synthetic sequences, we have a decreasing depen-
dency between κ and EE. We expect an increasing depen-
dency between ELKV and EE, thus, the plots should draw
a parabola. That is, we expect low values of EE for values
of ELKV close to 0, and high values of EE for values of
ELKV close to 1. In this case we do not observe a clear
increasing dependency.

Tables 2 and 3 show Spearman coefficient ρ and the

κ ELKV
ρ p− val ρ p− val

Dimetrodon -0.53 0.00 -0.62 1.00
Grove2 -0.62 0.00 -0.46 1.00
Grove3 -0.57 0.00 -0.41 1.00

Hydrangea -0.69 0.00 -0.62 1.00
RubberWhale -0.56 0.00 -0.26 1.00

Urban2 -0.63 0.00 -0.69 1.00
Urban3 -0.58 0.00 -0.58 1.00
Venus -0.60 0.00 -0.58 1.00

Table 3: Spearman tests TP1 (for κ) and TP2 (for ELKV )
for variational LK considering the Middlebury database.

p−value for the unilateral tests TP1 and TP2 consider-
ing the synthetic and the Middlebury databases respectively.
As expected, the Spearman correlation coefficient achieves
negative values for κ versus EE and the p−value is of the
order of 10−16, so that, there is a negative dependency be-
tween κ andEE. However, ρ does not achieve high positive
values forELKV versusEE, which is reflected in p−values
close to 1.

5.3. Application to autonomous navigation

In this section we show that the confidence measure can
also be used to assess autonomous navigation.

Figure 5 shows the condition number and the computed
optical flow for the Endepa sequences: ConstructionSite,
CrazyTurn and InternOnBike. The OF is expected to be
convergent to a vanishing point, and cars and objects having
a different motion. Notice that for these sequences we have
a reflectance over the bonnet and in that region, the flow of
the above part is reflected.

In figure 5, first row images show a representative frame
of the Endepa sequences with regions having a good confi-
dence measure enclosed by black lines and filled in red. For
those regions with a good confidence measure we expect a
reliable OF computation, while, for regions with low values
of κ we expect a random computation of the OF. Second
row images show the OF associated to the confidence mea-
sure shown on above images. Notice that for regions with
good κ, OF is always as expected, while regions with low
κ, OF direction is random. In fig. 5(d) there is an example
where the OF is accurate for low values of κ whereas in the
other two images (figs. 5(e) and (f)), the OF is deviated for
low values of κ. Therefore, κ can assess in which regions
of the sequence OF is properly computed.

6. Summary and Future Work
In spite of the advances in the design of variational

schemes, confidence measures are rarely addressed in the

2046



(a) Seq1 H (b) Seq2 M (c) Seq3 D

Figure 2: Point cloud plots for local LK for three representative synthetic sequences. κ versus EE.

(a) Seq1 H (b) Seq2 M (c) Seq3 D

(d) Seq1 H (e) Seq2 M (f) Seq3 D

Figure 3: Point clouds plots for variational LK for three representative synthetic sequences. κ versus EE in first row and
ELKV versus EE in the second one.

literature. However, for their reliable application to naviga-
tion systems, we need a confidence measure to determine in
which points the estimation is accurate. This paper reports
an error analysis for Lukas-Kanade approaches and intro-
duces a local confidence measure for global (variational)
and local approaches. We compare our measure to an exist-
ing quantity in terms of their correlation to end-point-errors.

For sequences with ground truth (self-made synthetic se-
quences and the Middlebury database), our confidence mea-
sure presents a good correlation with flow errors for a local

and a global approach. We found out that the existing quan-
tity failed to present the expected correlation. Experiments
on sequences for driving assistance show that a drop in our
confidence measure implies that an erratic random direction
of the computed optical flow, while high values ensure sta-
ble and coherent flows.

There are some improvements that should be done in the
near future. First we note that for variational approaches,
ALK should be replaced by the matrix associated to the dis-
cretization of the Euler-Lagrange system. Second, in order
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(a) Grove2 (b) RubberWhale (c) Urban2

(d) Grove2 (e) RubberWhale (f) Urban2

Figure 4: Point clouds plots for variational LK for the Middlebury sequences: Grove2, RubberWhale and Urban2. κ versus
EE in first row and ELKV versus EE in the second one.

H M D
κ ELKV κ ELKV κ ELKV

ρ p− val ρ p− val ρ p− val ρ p− val ρ p− val ρ p− val
Seq1 -0.59 0.00 -0.38 1.00 -0.61 0.00 0.02 0.23 -0.59 0.00 0.05 0.09
Seq2 -0.57 0.00 -0.29 1.00 -0.58 0.00 -0.06 0.98 -0.59 0.00 -0.11 1.00
Seq3 -0.62 0.00 -0.43 1.00 -0.58 0.00 -0.08 1.00 -0.58 0.00 -0.07 1.00

Table 2: Spearman tests TP1 (for κ) and TP2 (for ELKV ) for variational LK considering the Synthetic database.

to ensure a practical application, we should statistically de-
termine which is the minimum value of the confidence mea-
sure ensuring a given predefined accuracy. Finally, it would
be interesting to compare our confidence measure to other
ones.
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