toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Albert Andaluz; Francesc Carreras; Cristina Santa Marta;Debora Gil edit   pdf
url  openurl
  Title Myocardial torsion estimation with Tagged-MRI in the OsiriX platform Type Conference Article
  Year (down) 2012 Publication ISBI Workshop on Open Source Medical Image Analysis software Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Myocardial torsion (MT) plays a crucial role in the assessment of the functionality of the
left ventricle. For this purpose, the IAM group at the CVC has developed the Harmonic Phase Flow (HPF) plugin for the Osirix DICOM platform . We have validated its funcionalty on sequences acquired using different protocols and including healthy and pathological cases. Results show similar torsion trends for SPAMM acquisitions, with pathological cases introducing expected deviations from the ground truth. Finally, we provide the plugin free of charge at http://iam.cvc.uab.es
 
  Address Barcelona, Spain  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor Wiro Niessen (Erasmus MC) and Marc Modat (UCL)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISBI  
  Notes IAM Approved no  
  Call Number IAM @ iam @ ACS2012 Serial 1900  
Permanent link to this record
 

 
Author Ferran Poveda; Enric Marti; Debora Gil; Francesc Carreras; Manel Ballester edit   pdf
url  doi
openurl 
  Title Helical Structure of Ventricular Anatomy by Diffusion Tensor Cardiac MR Tractography Type Journal Article
  Year (down) 2012 Publication Journal of American College of Cardiology Abbreviated Journal JACC  
  Volume 5 Issue 7 Pages 754-755  
  Keywords  
  Abstract It is widely accepted that myocardial fiber architecture plays a critical role in myocardial contractility and relaxation (1). However, there is a lack of consensus about the distribution of the myocardial fibers and their spatial arrangement in the left and right ventricles. An understanding of the cardiac architecture should benefit the ventricular functional assessment, left ventricular reconstructive surgery planning, or resynchronization therapy in heart failure. Researchers have proposed several conceptual models to describe the architecture of the heart, ranging from gross dissection to histological presentation. The cardiac mesh model (2) proposes that the myocytes are arranged longitudinally and radially change their angulation along the myocardial depth. By contrast, the helical ventricular myocardial model states that the ventricular myocardium is a continuous anatomical helical layout of myocardial fibers (1  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-878X ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ PMG2012 Serial 1985  
Permanent link to this record
 

 
Author Ferran Poveda; Debora Gil;Enric Marti edit   pdf
doi  isbn
openurl 
  Title Multi-resolution DT-MRI cardiac tractography Type Conference Article
  Year (down) 2012 Publication Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges Abbreviated Journal  
  Volume 7746 Issue Pages 270-277  
  Keywords  
  Abstract Even using objective measures from DT-MRI no consensus about myocardial architecture has been achieved so far. Streamlining provides good reconstructions at low level of detail, but falls short to give global abstract interpretations. In this paper, we present a multi-resolution methodology that is able to produce simplified representations of cardiac architecture. Our approach produces a reduced set of tracts that are representative of the main geometric features of myocardial anatomical structure. Experiments show that fiber geometry is preserved along reductions, which validates the simplified model for interpretation of cardiac architecture.  
  Address Nice, France  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-36960-5 Medium  
  Area Expedition Conference STACOM  
  Notes IAM Approved no  
  Call Number IAM @ iam @ PGM2012 Serial 1986  
Permanent link to this record
 

 
Author Debora Gil;Agnes Borras;Ruth Aris;Mariano Vazquez;Pierre Lafortune; Guillame Houzeaux edit   pdf
doi  isbn
openurl 
  Title What a difference in biomechanics cardiac fiber makes Type Conference Article
  Year (down) 2012 Publication Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges Abbreviated Journal  
  Volume 7746 Issue Pages 253-260  
  Keywords  
  Abstract Computational simulations of the heart are a powerful tool for a comprehensive understanding of cardiac function and its intrinsic relationship with its muscular architecture. Cardiac biomechanical models require a vector field representing the orientation of cardiac fibers. A wrong orientation of the fibers can lead to a
non-realistic simulation of the heart functionality. In this paper we explore the impact of the fiber information on the simulated biomechanics of cardiac muscular anatomy. We have used the John Hopkins database to perform a biomechanical simulation using both a synthetic benchmark fiber distribution and the data obtained experimentally from DTI. Results illustrate how differences in fiber orientation affect heart deformation along cardiac cycle.
 
  Address Nice, France  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-36960-5 Medium  
  Area Expedition Conference STACOM  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GBA2012 Serial 1987  
Permanent link to this record
 

 
Author Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil edit   pdf
url  doi
isbn  openurl
  Title Optimal Medial Surface Generation for Anatomical Volume Representations Type Book Chapter
  Year (down) 2012 Publication Abdominal Imaging. Computational and Clinical Applications Abbreviated Journal LNCS  
  Volume 7601 Issue Pages 265-273  
  Keywords Medial surface representation; volume reconstruction  
  Abstract Medial representations are a widely used technique in abdominal organ shape representation and parametrization. Those methods require good medial manifolds as a starting point. Any medial
surface used to parametrize a volume should be simple enough to allow an easy manipulation and complete enough to allow an accurate reconstruction of the volume. Obtaining good quality medial
surfaces is still a problem with current iterative thinning methods. This forces the usage of generic, pre-calculated medial templates that are adapted to the final shape at the cost of a drop in volume reconstruction.
This paper describes an operator for generation of medial structures that generates clean and complete manifolds well suited for their further use in medial representations of abdominal organ volumes. While being simpler than thinning surfaces, experiments show its high performance in volume reconstruction and preservation of medial surface main branching topology.
 
  Address Nice, France  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Yoshida, Hiroyuki and Hawkes, David and Vannier, MichaelW.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-33611-9 Medium  
  Area Expedition Conference STACOM  
  Notes IAM Approved no  
  Call Number IAM @ iam @ VGG2012b Serial 1988  
Permanent link to this record
 

 
Author Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil edit   pdf
doi  isbn
openurl 
  Title A medial map capturing the essential geometry of organs Type Conference Article
  Year (down) 2012 Publication ISBI Workshop on Open Source Medical Image Analysis software Abbreviated Journal  
  Volume Issue Pages 1691 - 1694  
  Keywords Medial Surface Representation, Volume Reconstruction,Geometry , Image reconstruction , Liver , Manifolds , Shape , Surface morphology , Surface reconstruction  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Accurate computation of one pixel wide medial surfaces is mandatory. Those surfaces must represent faithfully the geometry of the volume. Although morphological methods produce excellent results in 2D, their complexity and quality drops across dimensions, due to a more complex description of pixel neighborhoods. This paper introduces a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. Our experiments show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume  
  Address Barcelona,Spain  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1945-7928 ISBN 978-1-4577-1857-1 Medium  
  Area Expedition Conference ISBI  
  Notes IAM Approved no  
  Call Number IAM @ iam @ VGG2012a Serial 1989  
Permanent link to this record
 

 
Author Patricia Marquez;Debora Gil;Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title A Complete Confidence Framework for Optical Flow Type Conference Article
  Year (down) 2012 Publication 12th European Conference on Computer Vision – Workshops and Demonstrations Abbreviated Journal  
  Volume 7584 Issue 2 Pages 124-133  
  Keywords Optical flow, confidence measures, sparsification plots, error prediction plots  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Florence, Italy, October 7-13, 2012 Editor Andrea Fusiello, Vittorio Murino ,Rita Cucchiara  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-33867-0 Medium  
  Area Expedition Conference ECCVW  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MGH2012b Serial 1991  
Permanent link to this record
 

 
Author Mariano Vazquez; Ruth Aris; Guillaume Hozeaux; R.Aubry; P.Villar;Jaume Garcia ; Debora Gil; Francesc Carreras edit   pdf
url  doi
openurl 
  Title A massively parallel computational electrophysiology model of the heart Type Journal Article
  Year (down) 2011 Publication International Journal for Numerical Methods in Biomedical Engineering Abbreviated Journal IJNMBE  
  Volume 27 Issue Pages 1911-1929  
  Keywords computational electrophysiology; parallelization; finite element methods  
  Abstract This paper presents a patient-sensitive simulation strategy capable of using the most efficient way the high-performance computational resources. The proposed strategy directly involves three different players: Computational Mechanics Scientists (CMS), Image Processing Scientists and Cardiologists, each one mastering its own expertise area within the project. This paper describes the general integrative scheme but focusing on the CMS side presents a massively parallel implementation of computational electrophysiology applied to cardiac tissue simulation. The paper covers different angles of the computational problem: equations, numerical issues, the algorithm and parallel implementation. The proposed methodology is illustrated with numerical simulations testing all the different possibilities, ranging from small domains up to very large ones. A key issue is the almost ideal scalability not only for large and complex problems but also for medium-size meshes. The explicit formulation is particularly well suited for solving this highly transient problems, with very short time-scale.  
  Address Swansea (UK)  
  Corporate Author John Wiley & Sons, Ltd. Thesis  
  Publisher John Wiley & Sons, Ltd. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ VAH2011 Serial 1198  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Mireia Brunat;Steven Jansen; Jordi Martinez-Vilalta edit   pdf
doi  openurl
  Title Structure-preserving smoothing of biomedical images Type Journal Article
  Year (down) 2011 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 44 Issue 9 Pages 1842-1851  
  Keywords Non-linear smoothing; Differential geometry; Anatomical structures; segmentation; Cardiac magnetic resonance; Computerized tomography  
  Abstract Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ GHB2011 Serial 1526  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Jaume Garcia; Enric Marti edit   pdf
doi  openurl
  Title Image-based Cardiac Phase Retrieval in Intravascular Ultrasound Sequences Type Journal Article
  Year (down) 2011 Publication IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Abbreviated Journal T-UFFC  
  Volume 58 Issue 1 Pages 60-72  
  Keywords 3-D exploring; ECG; band-pass filter; cardiac motion; cardiac phase retrieval; coronary arteries; electrocardiogram signal; image intensity local mean evolution; image-based cardiac phase retrieval; in vivo pullbacks acquisition; intravascular ultrasound sequences; longitudinal motion; signal extrema; time 36 ms; band-pass filters; biomedical ultrasonics; cardiovascular system; electrocardiography; image motion analysis; image retrieval; image sequences; medical image processing; ultrasonic imaging  
  Abstract Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-3010 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS Approved no  
  Call Number IAM @ iam @ HGG2011 Serial 1546  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: