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Abstract. This paper introduces a framework for evaluating the per-
formance of information retrieval systems. Current evaluation metrics
provide an average score that does not consider performance variability
across the query set. In this manner, conclusions lack of any statistical
significance, yielding poor inference to cases outside the query set and
possibly unfair comparisons. We propose to apply statistical methods
in order to obtain a more informative measure for problems in which
different query classes can be identified. In this context, we assess the
performance variability on two levels: overall variability across the whole
query set and specific query class-related variability. To this end, we esti-
mate confidence bands for precision-recall curves, and we apply ANOVA
in order to assess the significance of the performance across different
query classes.

1 Introduction

An effective performance measure is of essential importance in the development
of new learning algorithms. In the case of content-based image retrieval (CBIR),
the standard evaluation protocol consists of defining an image query set, comput-
ing a performance score for each single query, and finally aggregating - usually
averaging - them to obtain a global score. Whereas this is a very compact way to
represent and compare algorithm performances, it might not be fully informative
since the single global score does not take into account performance variability.
In order to estimate if there are significant differences in evaluation scores, a
usual practice is to compute confidence intervals for the achieved score. In the
context of classification problems, the usage of bootstrapping has been advo-
cated [1]. The application of this technique to precision-recall (PR) curves and
receiver operating characteristic (ROC) curve is discussed in [2] and [3], respec-
tively. Bootstrapping basically consists in repeatedly taking random samples,
with replacement, from the data points (images from the test sets, in our case).
From each sample, a curve will be generated. Alternatively, cross-validation can
be used to repeatedly split the dataset into a training and a test set. This pro-
duces a curve for each split. Once multiple curves are obtained from the data,



Fig. 1. Examples of four different motive classes.

several methods exist in order to generate confidence bands for each curve [4].
The variability caught by this approach is entirely associated to the search space,
as it depends on the test dataset images. In the context of CBIR, aside from the
variability associated to the whole search space [2], there are specific variability
factors associated to each query. As a matter of fact, this variability is lost when
averaging the individual query scores in order to obtain an overall measure (such
as mean average precision).

Variability is particularly critical in the case of a very heterogeneous set of
queries, given that the algorithm performances is prone to vary significantly
across the query set. This is the case, for instance, of artistic motive retrieval
from ancient Greek pottery digital repositories [5], [6]. In this context, we have
a set of queries divided into several classes (some examples in Figure 1) which,
as discussed in [5], show high inter-class variability. The exploratory study pre-
sented in [5] also showed that the method that best performs on a certain query
class, might not be as effective on the others. In this context, evaluating a sys-
tem with an overall score which aggregates the individual query results does not
provide enough information to select the best solution. Since the interest is to
assess the robustness of the tested methods, this motivates to produce an evalu-
ation metrics capable to capture the method average performance as well as its
variability when applied to different query classes. In this direction, besides the
context of image processing, a large amount of work has been published in the
field of test diagnostics concerning the estimation of test scores - such as the area
under the receiver operating characteristic curve (AUC) - and their variability
when comparing different scores. Both non-parametric [7], [8] and parametric
approach, based on normality assumption [9], have been proposed in the liter-
ature. A common concern is the impossibility of these methods to analyse the
sources of variability and the factors influencing the performance of a system.

This paper presents a statistical framework that allows us to evaluate and
compare different CBIR methods, in terms of the factors that most influence
their performances. Our evaluation scheme is focused on studying the perfor-
mance variability associated to the different classes of query as well as allowing
for a class-wise comparison. Our comparison framework has been applied to 2
standard methods and experiments show the influence of the query type in their
performances.



2 Assessment of inter-query variability

The common evaluation protocol for CBIR, inherited from information retrieval
[10], is based on the notions of relevant and non-relevant retrieved images for
a certain query. Given a test set and a set of query images, for each query a
CBIR system is asked to output a number of ranked list of the test set images,
according to a relevance measure of the images to the query. The quality of
the ranked lists is evaluated based on whether the first k retrieved images are
actually relevant or not for the given query. Whereas in binary classification
problems true positive rate (TPr) and false positive rate (FPr) are commonly
used, the standard evaluation metrics in CBIR are precision and recall (also
known as sensitivity) since they better deal with unbalanced class distributions,
which are typical in retrieval tasks [11]. Precision p(k) and recall r(k) for the
first k elements of the output ranked list are defined as

p(k) = R(k)/k and r(k) = R(k)/Nrel, (1)

where R(k) is the number of relevant documents contained in the top k ranked
elements and Nrel is the total number of relevant documents contained in the
test set. Precision measures how many of the retrieved documents are actually
relevant for the query, whereas recall estimates how many of the relevant docu-
ments have been retrieved. The plot given by precision and recall values obtained
for each query, called precision-recall (PR) curve, is commonly used to visually
assess the CBIR systems. For each query, the area under the PR curve, known as
average precision (AP), is the usual evaluation score of the single query retrieval,

and it is given by AP = 1
2

∑N
k=2[p(k) + p(k − 1)][r(k) − r(k − 1)]. The overall

system performance score is then computed by averaging the AP values obtained
for each query. This score is known as mean average precision (mAP), and it
is normally used to compare the performances of different algorithms, given a
query set and a test set.

As pointed out in Section 1, mAP comparisons might yield unfair results and
cannot detect the sources of error and variability in performance. The PR curves
and the corresponding APs will be used in the following for our study on CBIR
system evaluation. As introduced in Section 1, we are interested in estimating
the performance variability within query sets (or subsets such as classes) in order
to achieve a more informative evaluation of a retrieval system. Quantifying the
variability of the performance for different queries within a set can be useful to
assess the method robustness for that set. Such variability can be obtained by
exploring the differences on PR curves and APs across a given set. Variability of
PR curves will be assessed by computing confidence bands for curves sampled
over a given population group. Confidence bands will be computed using vertical
averaging (VA) [4]. VA consists of stacking precision values from the different
samples that correspond to the same recall values. Therefore, the precision has to
be expressed directly as a function of the recall. This can be done by obtaining
k from (1) as k(r) = R−1(rNrel). It must be noted that R is monotonically
increasing within its domain, which guarantees the existence of its inverse R−1.



By substitution, we find p(r) = rNrel/R
−1(rNrel). In practice, p(r) is only

defined for a discrete set of recall values within [0, 1], which vary across different
queries. Therefore, we linearly interpolated the function in [0, 1] and we sampled
the recall with step 1/(NP − 1), where NP is the number of quantiles. For each
sampled quantile, the average defining the confidence band is computed from a
given a set of NQ query images, thus, NQ PR curves, as follows. Let pqj = pq(rj)
be our precision observations for the j-th quantile, j = 1, . . . , NP , and the q-th
query image, q = 1, . . . , NQ. If µpj , σpj are, respectively, the unbiased sample
“vertical” mean and variance for the j-th quantile, then the interval for µpj at
confidence level 1− α is:[

µpj − t
NQ−1

α/2

σpj√
NQ

, µpj + t
NQ−1

α/2

σpj√
NQ

]
, (2)

where t
NQ−1

α/2 is the value of a t-Student distribution with NQ − 1 degrees of

freedom. Joining the confidence intervals computed for all the NP quantiles, we
obtain the confidence band of the overall curve.

Confidence bands already provide visual assessment for significance differ-
ence in performance for 2 CBIR systems. In order to numerically check whether
a method performance significantly differs across query classes, we will use anal-
ysis of variance (ANOVA) [12]. ANOVA is a statistical tool used to test data
when it consists of a quantitative response variable and one or more categorical
explanatory variables (or factors). In its simplest form, it allows to check the
hypothesis that all the groups (corresponding to the different factors) have the
same population mean. In our case, we want to study the different performances
between different query classes as well as between different methods. Therefore
our factors will be all possible method-query class pairs, whereas an intuitive
choice for the response variable is constituted by the AP. We will denote by
NC the number of query classes, and by nc the number of images belonging to
the c-th query class, being c = 1, . . . , NC . Assuming that we want to compare
2 methods, A and B, our factors are defined as Xc,m, where m is either A or
B. The response variable, i. e. the AP score for the q-th query and the method
m, will be represented by Y c,m. This way, for each ANOVA group - defined
by the factor Xc,m and the response variable Y c,m - we have nc observations
{Ŷ c,mq : q ∈ Cc}, being Cc the set of all subscripts q that belong to the c-th class.
Then, we can express the ANOVA null hypothesis as

H0 : µY 1,A = . . . = µY NC,A = µY 1,B = . . . = µY NC,B , (3)

which states that the precision observations obtained for the NC query classes
and the 2 different methods come from distributions with the same mean.

The ANOVA outcome indicates whether it is possible to reject the null hy-
pothesis or not. Yet, what we are interested to know is, for instance, which is
the best performing method-class combination, or whether there is a significant
difference between two specific performances. We can answer these questions by
applying pairwise comparison to the ANOVA outcome. In particular, we have
used Tukey’s honestly significant difference test (HSD) [13], which compares the



difference between each pair of factors with appropriate adjusting for multiple
testing. HSD is similar to a t-test, except that it takes into account the fact
that when there are multiple comparisons being made, the probability of mak-
ing a type I error increases [13]. Given a pair of factors, after estimating their
1− α confidence intervals, the test considers them significantly different if their
intervals are disjoint, and not significantly different otherwise.

3 Experimental set-up

The goal of these experiments is to assess the impact of variability in performance
evaluation of retrieval systems using the methods described in Section 2. We
have chosen the well known Oxford 5k dataset4, which contains 5062 images of
building “landmarks” from different viewpoints. A landmark is intended to be
a particular of a building. The landmarks are divided into 11 classes. Ground
truth is provided as follows. For each class, 5 images are annotated as queries.
The remaining images are annotated as: good if the landmark is clearly visible,
ok if more than the 25% of the landmark is clearly visible or junk if less than
the 25% of the landmark is visible or distortions are present, absent when the
landmark does not appear. Given that the number of images for the different
classes is highly variable (considering together good and ok, it ranges from 7 to
220), we selected a subset with balanced number of elements per class, since we
do not want the dataset imbalance to affect our statistical analysis. Our subset
of the Oxford 5k was created as follows. We picked the 5 classes that have the
highest numbers of elements (Fig. 2), among the good and ok annotated images.
Using the minimum of these numbers, we randomly sampled each class, without
replacement, until obtaining 5 subclasses with the same number of images. Then,
we added 300 distractor images, randomly sampled among the ones labelled as
absent for the picked 5 classes. Our final balanced dataset consists of 475 images.

In order to carry out our experiments, we implemented two CBIR systems
that have been evaluated on the dataset obtained as previously described: a
feature-level matching system and a local feature-based bag-of-words pipeline.
Both systems rely on SIFT [14] for local feature extraction, which has been
extensively used in literature for retrieving images of the same objects from
different viewpoints [15], [16], [17]. For the sake of compactness, from now on we
will refer to the first method as SIFT and to second method as BOW.

Following [14], our SIFT system matches features according to minimum Eu-
clidean distance. Moreover, a query feature is matched to a dataset feature only
if their distance - multiplied by a threshold - is less than the distance between
the query and all the other database features. The obtained matching are then
refined by checking for spatial consistency using RANSAC [18]. The implemen-
tation of our BOW system follows the works of [15] and [16]. We tried different
vocabulary sizes and we found that 50 was the best performer, thus it has been
used for the presented experiments. Moreover, 3% most and least frequent visual

4 http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/.



all souls christ church radcli e camera hertford magdalen

Fig. 2. Examples from the 5 query classes we chose to build our dataset.

words are clipped from the vocabulary and not used for image representation
and we applied the commonly used tf-idf weighting [15].

For each method, PR confidence bands were computed using all query classes
and NP = 10 quantiles, according to (2). ANOVA was computed for the APs
obtained for each query class and method, resulting in 5×2 = 10 ANOVA groups,
with 5 samples each. All statistics were computed at a significance α = 0.05.

4 Results and discussion

Computing the traditional AP scores for the two methods under test, we obtain a
value of 0.25 for SIFT and 0.30 for BOW. This would suggest that BOW globally
outperforms SIFT on this test set. However, the confidence bands obtained for
the PR curves of the two methods (Fig. 3(a)) show that, in both cases, the
performances are notably variable and the bands consistently overlap. Therefore,
we cannot find statistical evidence of the difference between the performances,
and even though the AP score is favourable to BOW, it does not necessarily
imply that this method is to be preferred for every query class.

Further evidences are brought by the ANOVA multiple comparison exper-
iment, whose outcome is illustrated in Figure 3(b). The figure represents the
confidence intervals for the different method-query class factors. As a general
comment, SIFT seems more stable showing a slightly smaller variance across the
query set. Considering differences across queries, the test does not find a signifi-
cant difference between the methods for 4 out of 5 classes. The intervals for the
classes all souls and christ church are completely overlapped so it is not possible
to make considerations in favour of either one or the other method. Concerning
magdalen class, we cannot observe a significantly best performance, from a sta-
tistical point of view, even if SIFT seem to be slightly preferable. Visually, this
class does not particularly differ from all souls and christ church, sharing with
them many local recurring patterns. We suspect that spatial consistency played
an important role in discriminating this class from the others, and it determined
the success of SIFT method. On the other hand, BOW is significantly better
in dealing with hertford class, which is the best case for both methods. This
class collects images of a building whose structure is sensibly different from the
buildings of other classes. So, we might argue that the presence of very distin-
guishable features made the task easier for the algorithms, especially favouring
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Fig. 3. Results from the performed experiments.

the generalization properties of the BOW approach. This consideration can be
extended to the radcliffe camera class. Even though the test outcome has no sta-
tistical significance we can practically observe an important difference between
the estimated mean values.

5 Conclusion

In this paper we present a study of a new evaluation framework for a better
understanding of the performance scores in image retrieval. This is particularly
useful when different query classes can be found in the dataset, such as in the
case of the Oxford 5k dataset, or in Greek pottery datasets. We proposed the
usage of statistical tools in order to estimate the performance variability, both
overall and with respect to the different query classes. This variability, usually
neglected by the traditional performance metrics (e. g. mAP score), can reflect
the method robustness and allows for a more informed comparison between
methods, especially when the query set is particularly heterogeneous.

A main concern for the proposed approach is the number of samples (indi-
viduals) for each ANOVA factor, which, being as low as in the current case, it
drops ANOVA discriminative power. This implies that less difference might be
detected, even though it was possible to observe important differences between
the performances for some query classes. This validates our variability study and
encourages searching for alternative statistical tools. In particular we plan to ap-
ply mixed model with random effects [19] to increase the discriminative power.
Such models are more flexible than ANOVA and allow to to identify explanatory
variables for complex designs.
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