|
Records |
Links |
|
Author |
Debora Gil; Antonio Esteban Lansaque; Sebastian Stefaniga; Mihail Gaianu; Carles Sanchez |
|
|
Title |
Data Augmentation from Sketch |
Type |
Conference Article |
|
Year |
2019 |
Publication |
International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging |
Abbreviated Journal |
|
|
|
Volume |
11840 |
Issue |
|
Pages |
155-162 |
|
|
Keywords |
Data augmentation; cycleGANs; Multi-objective optimization |
|
|
Abstract |
State of the art machine learning methods need huge amounts of data with unambiguous annotations for their training. In the context of medical imaging this is, in general, a very difficult task due to limited access to clinical data, the time required for manual annotations and variability across experts. Simulated data could serve for data augmentation provided that its appearance was comparable to the actual appearance of intra-operative acquisitions. Generative Adversarial Networks (GANs) are a powerful tool for artistic style transfer, but lack a criteria for selecting epochs ensuring also preservation of intra-operative content.
We propose a multi-objective optimization strategy for a selection of cycleGAN epochs ensuring a mapping between virtual images and the intra-operative domain preserving anatomical content. Our approach has been applied to simulate intra-operative bronchoscopic videos and chest CT scans from virtual sketches generated using simple graphical primitives. |
|
|
Address |
Shenzhen; China; October 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CLIP |
|
|
Notes |
IAM; 600.145; 601.337; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GES2019 |
Serial |
3359 |
|
Permanent link to this record |
|
|
|
|
Author |
Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil |
|
|
Title |
Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy |
Type |
Conference Article |
|
Year |
2018 |
Publication |
OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
11041 |
Issue |
|
Pages |
|
|
|
Keywords |
Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification |
|
|
Abstract |
Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems. |
|
|
Address |
Granada; September 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MICCAIW |
|
|
Notes |
IAM; 600.096; 600.075; 601.323; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RSB2018b |
Serial |
3137 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Oriol Ramos Terrades; Elisa Minchole; Carles Sanchez; Noelia Cubero de Frutos; Marta Diez-Ferrer; Rosa Maria Ortiz; Antoni Rosell |
|
|
Title |
Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer |
Type |
Conference Article |
|
Year |
2017 |
Publication |
6th Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging |
Abbreviated Journal |
|
|
|
Volume |
10550 |
Issue |
|
Pages |
151-159 |
|
|
Keywords |
|
|
|
Abstract |
Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.
The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.
We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results. |
|
|
Address |
Quebec; Canada; September 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CLIP |
|
|
Notes |
IAM; 600.096; 600.075; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRM2017 |
Serial |
2957 |
|
Permanent link to this record |
|
|
|
|
Author |
Antoni Gurgui; Debora Gil; Enric Marti; Vicente Grau |
|
|
Title |
Left-Ventricle Basal Region Constrained Parametric Mapping to Unitary Domain |
Type |
Conference Article |
|
Year |
2016 |
Publication |
7th International Workshop on Statistical Atlases & Computational Modelling of the Heart |
Abbreviated Journal |
|
|
|
Volume |
10124 |
Issue |
|
Pages |
163-171 |
|
|
Keywords |
Laplacian; Constrained maps; Parameterization; Basal ring |
|
|
Abstract |
Due to its complex geometry, the basal ring is often omitted when putting different heart geometries into correspondence. In this paper, we present the first results on a new mapping of the left ventricle basal rings onto a normalized coordinate system using a fold-over free approach to the solution to the Laplacian. To guarantee correspondences between different basal rings, we imposed some internal constrained positions at anatomical landmarks in the normalized coordinate system. To prevent internal fold-overs, constraints are handled by cutting the volume into regions defined by anatomical features and mapping each piece of the volume separately. Initial results presented in this paper indicate that our method is able to handle internal constrains without introducing fold-overs and thus guarantees one-to-one mappings between different basal ring geometries. |
|
|
Address |
Athens; October 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
STACOM |
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGM2016 |
Serial |
2884 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Lluis Albarracin; Daniel Calvo; Nuria Gorgorio |
|
|
Title |
EyeMath: Identifying Mathematics Problem Solving Processes in a RTS Video Game |
Type |
Conference Article |
|
Year |
2016 |
Publication |
5th International Conference Games and Learning Alliance |
Abbreviated Journal |
|
|
|
Volume |
10056 |
Issue |
|
Pages |
50-59 |
|
|
Keywords |
Simulation environment; Automated Driving; Driver-Vehicle interaction |
|
|
Abstract |
Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GALA |
|
|
Notes |
ADAS;IAM; |
Approved |
no |
|
|
Call Number |
HAC2016 |
Serial |
2864 |
|
Permanent link to this record |
|
|
|
|
Author |
Saad Minhas; Aura Hernandez-Sabate; Shoaib Ehsan; Katerine Diaz; Ales Leonardis; Antonio Lopez; Klaus McDonald Maier |
|
|
Title |
LEE: A photorealistic Virtual Environment for Assessing Driver-Vehicle Interactions in Self-Driving Mode |
Type |
Conference Article |
|
Year |
2016 |
Publication |
14th European Conference on Computer Vision Workshops |
Abbreviated Journal |
|
|
|
Volume |
9915 |
Issue |
|
Pages |
894-900 |
|
|
Keywords |
Simulation environment; Automated Driving; Driver-Vehicle interaction |
|
|
Abstract |
Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical. |
|
|
Address |
Amsterdam; The Netherlands; October 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECCVW |
|
|
Notes |
ADAS;IAM; 600.085; 600.076 |
Approved |
no |
|
|
Call Number |
MHE2016 |
Serial |
2865 |
|
Permanent link to this record |
|
|
|
|
Author |
Hanne Kause; Aura Hernandez-Sabate; Patricia Marquez; Andrea Fuster; Luc Florack; Hans van Assen; Debora Gil |
|
|
Title |
Confidence Measures for Assessing the HARP Algorithm in Tagged Magnetic Resonance Imaging |
Type |
Book Chapter |
|
Year |
2015 |
Publication |
Statistical Atlases and Computational Models of the Heart. Revised selected papers of Imaging and Modelling Challenges 6th International Workshop, STACOM 2015, Held in Conjunction with MICCAI 2015 |
Abbreviated Journal |
|
|
|
Volume |
9534 |
Issue |
|
Pages |
69-79 |
|
|
Keywords |
|
|
|
Abstract |
Cardiac deformation and changes therein have been linked to pathologies. Both can be extracted in detail from tagged Magnetic Resonance Imaging (tMRI) using harmonic phase (HARP) images. Although point tracking algorithms have shown to have high accuracies on HARP images, these vary with position. Detecting and discarding areas with unreliable results is crucial for use in clinical support systems. This paper assesses the capability of two confidence measures (CMs), based on energy and image structure, for detecting locations with reduced accuracy in motion tracking results. These CMs were tested on a database of simulated tMRI images containing the most common artifacts that may affect tracking accuracy. CM performance is assessed based on its capability for HARP tracking error bounding and compared in terms of significant differences detected using a multi comparison analysis of variance that takes into account the most influential factors on HARP tracking performance. Results showed that the CM based on image structure was better suited to detect unreliable optical flow vectors. In addition, it was shown that CMs can be used to detect optical flow vectors with large errors in order to improve the optical flow obtained with the HARP tracking algorithm. |
|
|
Address |
Munich; Germany; January 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-319-28711-9 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
STACOM |
|
|
Notes |
ADAS; IAM; 600.075; 600.076; 600.060; 601.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KHM2015 |
Serial |
2734 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; F. Javier Sanchez; Gloria Fernandez Esparrach; Jorge Bernal |
|
|
Title |
3D Stable Spatio-temporal Polyp Localization in Colonoscopy Videos |
Type |
Book Chapter |
|
Year |
2015 |
Publication |
Computer-Assisted and Robotic Endoscopy. Revised selected papers of Second International Workshop, CARE 2015, Held in Conjunction with MICCAI 2015 |
Abbreviated Journal |
|
|
|
Volume |
9515 |
Issue |
|
Pages |
140-152 |
|
|
Keywords |
Colonoscopy, Polyp Detection, Polyp Localization, Region Extraction, Watersheds |
|
|
Abstract |
Computational intelligent systems could reduce polyp miss rate in colonoscopy for colon cancer diagnosis and, thus, increase the efficiency of the procedure. One of the main problems of existing polyp localization methods is a lack of spatio-temporal stability in their response. We propose to explore the response of a given polyp localization across temporal windows in order to select
those image regions presenting the highest stable spatio-temporal response.
Spatio-temporal stability is achieved by extracting 3D watershed regions on the
temporal window. Stability in localization response is statistically determined by analysis of the variance of the output of the localization method inside each 3D region. We have explored the benefits of considering spatio-temporal stability in two different tasks: polyp localization and polyp detection. Experimental results indicate an average improvement of 21:5% in polyp localization and 43:78% in polyp detection. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CARE |
|
|
Notes |
IAM; MV; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GSF2015 |
Serial |
2733 |
|
Permanent link to this record |
|
|
|
|
Author |
Carles Sanchez; Debora Gil; Jorge Bernal; F. Javier Sanchez; Marta Diez-Ferrer; Antoni Rosell |
|
|
Title |
Navigation Path Retrieval from Videobronchoscopy using Bronchial Branches |
Type |
Conference Article |
|
Year |
2016 |
Publication |
19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops |
Abbreviated Journal |
|
|
|
Volume |
9401 |
Issue |
|
Pages |
62-70 |
|
|
Keywords |
Bronchoscopy navigation; Lumen center; Brochial branches; Navigation path; Videobronchoscopy |
|
|
Abstract |
Bronchoscopy biopsy can be used to diagnose lung cancer without risking complications of other interventions like transthoracic needle aspiration. During bronchoscopy, the clinician has to navigate through the bronchial tree to the target lesion. A main drawback is the difficulty to check whether the exploration is following the correct path. The usual guidance using fluoroscopy implies repeated radiation of the clinician, while alternative systems (like electromagnetic navigation) require specific equipment that increases intervention costs. We propose to compute the navigated path using anatomical landmarks extracted from the sole analysis of videobronchoscopy images. Such landmarks allow matching the current exploration to the path previously planned on a CT to indicate clinician whether the planning is being correctly followed or not. We present a feasibility study of our landmark based CT-video matching using bronchoscopic videos simulated on a virtual bronchoscopy interactive interface. |
|
|
Address |
Quebec; Canada; September 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MICCAIW |
|
|
Notes |
IAM; MV; 600.060; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SGB2016 |
Serial |
2885 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Vera; Debora Gil; Miguel Angel Gonzalez Ballester |
|
|
Title |
Anatomical parameterization for volumetric meshing of the liver |
Type |
Conference Article |
|
Year |
2014 |
Publication |
SPIE – Medical Imaging |
Abbreviated Journal |
|
|
|
Volume |
9036 |
Issue |
|
Pages |
|
|
|
Keywords |
Coordinate System; Anatomy Modeling; Parameterization |
|
|
Abstract |
A coordinate system describing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specific anatomical landmarks, the coordinate system allows integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric coordinate systems over the surface of anatomical shapes, given their flexibility to set values
at specific locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at sites
of limited geometric diversity. In this paper we present a method for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the
volume medial surface. We have applied the methodology to define a common reference system for the liver shape and functional anatomy. This reference system sets a solid base for creating anatomical models of the patient’s liver, and allows comparing livers from several patients in a common framework of reference. |
|
|
Address |
Amsterdam; September 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SPIE-MI |
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ VGG2014 |
Serial |
2456 |
|
Permanent link to this record |