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Abstract. Cardiac deformation and changes therein have been linked
to pathologies. Both can be extracted in detail from tagged Magnetic
Resonance Imaging (tMRI) using harmonic phase (HARP) images. Al-
though point tracking algorithms have shown to have high accuracies on
HARP images, these vary with position. Detecting and discarding areas
with unreliable results is crucial for use in clinical support systems. This
paper assesses the capability of two confidence measures (CMs), based
on energy and image structure, for detecting locations with reduced ac-
curacy in motion tracking results. These CMs were tested on a database
of simulated tMRI images containing the most common artifacts that
may affect tracking accuracy. CM performance is assessed based on its
capability for HARP tracking error bounding and compared in terms of
significant differences detected using a multi comparison analysis of vari-
ance that takes into account the most influential factors on HARP track-
ing performance. Results showed that the CM based on image structure
was better suited to detect unreliable optical flow vectors. In addition,
it was shown that CMs can be used to detect optical flow vectors with
large errors in order to improve the optical flow obtained with the HARP
tracking algorithm.

1 Introduction

Tagged MRI (tMRI) is an important imaging technique to obtain detailed mo-
tion information of the cardiac left ventricle (LV) [1]. Tagged MRI images are
obtained by spatially modulating the MR magnetization (SPAMM) field just
before performing a cine acquisition so that images have a characteristic stripe
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or grid pattern that deforms along with cardiac tissue contraction and relax-
ation [2]. This enables the analysis of motion and deformation over time, which
are known to reflect changes due to pathology [3,4,5]. The current standard for
obtaining motion information from tMRI is by application of a material point
tracking algorithm on harmonic phase (HARP) images, presented by Osman et
al. [6,7]. In the past, it has been shown that HARP tracking is able to correctly
estimate the displacement of the cardiac muscle [8,9]. Nevertheless, there will
always be a limit to the accuracy which may drop in difficult areas. Therefore, it
is important to provide an estimate of the upper bound for the error by means
of a confidence measure (CM).

In this paper, we test the suitability of two CMs to serve as an estimation of the
error bounds in the absence of ground truth. The proposed CMs are quantities
computed from the input data that should help detect those points for which
the tracking is not accurate enough for further use, such as strain computations.
Unreliable points can be selected for post-processing by CMs, which improves
the quality of the results. It should be noted that for each value of the confidence
measure, which in our case lies within [0, 1], it can only provide an upper bound
to the displacement error at each pixel, instead of the displacement error value
itself (according to numerical error analysis [10]). This implies that high values of
the confidence measure, i.e. high confidence, should ensure a low tracking error,
while for low CM values errors may take any value, even a small one. Points that
have a high value of the CM and a high error are unpredictable points, which
cannot be detected by the CM and, thus, should not occur if the confidence
measure has a perfect performance. Furthermore, when this behaviour is stable
across frames or references with similar features, the CM is suited for bounding
the error in the absence of ground truth, which is ultimately what we need to
apply the CMs in a clinical setting.

To the best knowledge of the authors, no confidence measures have been proposed
that can give an estimate of the upper bound of the displacement error in HARP
results. In this paper, we propose and test the capability of different CMs for
bounding the motion estimation error of the HARP algorithm, which is explained
in Section 3, while tracking the cardiac left ventricle in tMRI sequences. First,
a database of synthetic tagged MR images containing several motion patterns
with known ground truth was generated by means of a simplified cardiac motion
simulator [11,12] and is analysed with the HARP tracking algorithm. Second,
sparse-density plots [13] were used to quantify the capability of a given CM to
bound the displacement error within the myocardium. Statistical analysis over
the variability of sparse-density plots is used to test the impact of motion and
appearance factors in displacement accuracy.
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2 Evaluation of Confidence Measures

In this work, the goal of a confidence measure is to provide an upper bound for
the flow error in order to detect pixels for which the flow estimation is likely
to be non-reliable. In order to assess the capability of a CM for bounding the
displacement error, we use Sparse-Density Plots (SDPs) [13]. An SDP evaluates
the risk of a confidence measure; that is, the proportion of points (ρ) the bound
of which can not be determined by CM values. While decision support systems
usually set a lower bound to acceptable accuracy, we compute ρ in terms of the
maximum allowed error (Emax), which we call risk:

ρ(CM0) := P (E > Emax|CM > CM0). (1)

Consequently the SDP is the plot given by:

SDP (prctCM ) := (prctCM , ρ(prctCM )), (2)

where prctCM are CM distribution percentiles , which are used instead of directly
using the CM to ensure that the SDP is invariant under monotonically increasing
transformations of the CM.

Considering a database of image sequences with ground truth, we compute the
SDP profile for every two subsequent frames. Note that each SDP profile assesses
a bound on the optical flow error specifically for the two frames on which it was
based. However, we would like to obtain a general curve, SDP, that can reliably
assess a bound on the optical flow error (also called risk) for any other sequence
with similar features without ground truth. Therefore, we provide a statistical
bound for the risk by computing an upper estimator of SDP profiles using a
Student’s t-distribution for confident estimation of random variables means. Let
us consider a sample of SDP profiles, {SDPi}Ni=1 of N frames (N > 30) present-
ing similar motion and appearance features. For each CM percentile, prctCM ,
consider the sample mean, µ(prctCM ), and variance, σ(prctCM ), computed for
the values ρi(prctCM ), i = 1, . . . , N . Then, an upper bound for ρi(prctCM ) at
confidence level αSDP is given by:

µ(prctCM ) + tN−11−αSDP
σ(prctCM ) = ΥprctCM

(3)

for tN−11−αSDP
the value of a Student’s t-distribution with N-1 degrees of freedom

having a cumulative probability equal to 1− αSDP [14]. The bounding curve is
defined as

SDP := SDP(prctCM ) = (prctCM , ΥprctCM
)

and it indicates that, once a prctCM of pixels has been removed, the error of the
remaining ones should be under EEmax with probability ΥprctCM

.

By definition of the confidence interval, the risk at prctCM is under ΥprctCM
for

new incoming frames with probability 1− αSDP [14], that is, for approximately
(1− αSDP)% of frames. For the remaining αSDP%, the risk could be as high as
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1. The bound ΥprctCM
applies to all frames provided that SDP variability across

such a frame sample is not large [15]. In this context, a most relevant quality
feature of confidence measures is a stable behaviour of SDP across sequences
in the decision support system. In other words, the lower variability in training
SDP profiles we have, the higher predictive value SDP has.

Under the previous considerations, the capability of a CM for risk bounding
should follow a two-stage cascade process. First, SDP predictive value should
be assessed and, then, for those CMs with the highest predictive value, the
quality of the bound provided by SDP should be determined. The predictive
value is assessed by the variance of SDP across the training samples, while the
quality of SDP bound is measured in terms of a minimum risk for the bounded
pixels. Each quality score is defined as follows:

1. SDP Predictive Value. Given a sampling of CM-percentiles prctjCM =
j·h
Nprct

, with h the sampling step and Nprct the number of percentiles, the

variance of its SDP is approximated by the unbiased sample estimator:

σSDPi =
1

Nprct − 1

Nprct∑
j=1

(
ρi(prct

j
CM )− Υ jprctCM

)2
, (4)

where i and j correspond to the frame and the percentile, respectively, and
Υ jprctCM

is the sample mean at the j -th sampled percentile computed by (3).

2. SDP Bound Quality. The amount of risk for a family of SDP curves can
be summarized by the mean area, AUCSDPi , under the curve SDP i. Given

a sampling of CM-percentiles prctjCM = j·h
Nprct

, AUCSDPi is defined as:

AUCSDPi :=
1

Nprct

Nprct∑
j=1

ρi(prct
j
CM ) (5)

for i, j denoting the frame and CM-percentile, respectively.

(a) (b)
Fig. 1. CM quality assessment: σSDPi computation for SDP predictive value assess-
ment (a), and AUCSDP

i computation for SDP bound quality (b).

Figure 1 illustrates the computation of the two quality scores, the variance σSDPi

and the average risk AUCSDPi . The prediction curve SDP is plotted in black and



Confidence Measures for HARP 5

the SDPi in red. Subsequently, the variance σSDPi is given by the area between
both curves (shaded area in Fig.1(a)) whereas the risk AUCSDPi is given by the
area under the curve (shaded area in Fig.1(b)).

3 The HARP algorithm

The stripe or grid pattern that is present in tMRI images deforms along with my-
ocardial tissue contraction and relaxation. This means that via feature tracking,
assessment of local cardiac motion should be possible. Osman et al. developed
a tracking algorithm (HARP) [6] that links changes of the feature over time
to local spatial feature changes by the tissue displacement y(n+1) − y(n) to be
estimated, similar to optical flow [16], but now iteratively:

y(n+1) − y(n)︸ ︷︷ ︸
displacement

= − [∇∗a(y(n), tm+1)]︸ ︷︷ ︸
(spatial) feature gradient

−1W(a(y(n), tm+1)− a(ym, tm))︸ ︷︷ ︸
temporal feature derivative

. (6)

Here, y is two-dimensional position, n is the iteration number, tm is time, a is
the apparent feature vector [a1 a2], where the subscript determines the input
image (image 1 and 2 start with perpendicular stripe tags in the first frame),
and W indicates the apparent feature is wrapped (v.i.).

Typically, the feature tracking in both optical flow and HARP assume feature
constancy over time. However, since the intensity of material points is not con-
stant in tMRI images, due to signal decay as a result of T1-relaxation, intensity
is not a proper feature to track. To overcome this issue, Osman et al. developed
a tracking algorithm based on (instead of pixel intensity) the harmonic phase of
material points, unaffected by signal decay [6].

By application of a Gabor filter to isolate the i-th spectral peak at frequency
ωi in the Fourier domain, a complex-valued spatial domain image is obtained.
Usually, the first harmonic spectral peak in the tag direction is preserved. Then,
the harmonic phase image is obtained by taking the argument of each pixel in
the complex spatial domain image. This is in fact not the true phase φk but the
wrapped “apparent” phase ak which lies within the interval [−π, π).

Because a is wrapped, it has discontinuities, which leads to problems in the
context of computing gradients. Therefore, before computing ∇a, a is locally
unwrapped, indicated by ∇∗ in Eq. (6).

4 Experimental Settings

The goal of our experiments is to show the applicability of the framework for se-
lecting CMs capable of predicting the displacement error upper bound in cardiac
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tagged MRI sequences analysed with HARP. Since the commercially available
HARP software does not allow access to the calculations, we used an in-house
implementation of the HARP algorithm described by Osman et. al [6]. In the ex-
periments, we are interested in the displacement of each pixel in the myocardium
at each time step and, therefore, we apply the HARP algorithm at each frame
separately. In [6], iteration stops when the phase difference between source and
target position drops below a threshold. However, since phase error is part of our
CM, we did not want to use it as a stopping criterion. Consequently, a stopping
criterion based on phase error stability (∆φ < 0.01) and/or maximum number
of iterations (N=30) was implemented.

The iteration process is stopped when the last five estimates are stable with a
threshold of 0.01 or when the maximum number of 30 iterations is reached.

To find the optimal confidence measure for the HARP tracking algorithm, we
have considered two types of CMs:

1. Image structure (Ck). The condition numbers of the spatial harmonic phase
gradient matrix from each iteration, see Equation (6), defined as

Ck = smin/smax

where s are singular values [17], are combined by taking the L2-norm.
2. Energy (Ce). The confidence measure Ce = cos(φ) is computed from the

final temporal harmonic phase difference

φ =W(a(ym+1, tm+1)− a(ym, tm)),

which is the difference between the harmonic phases a of the material point
in the two frames, with W a wrapping function, see Equation (6).

4.1 Cardiac Deformation DataSet

In order to test if CMs can accurately bound the motion tracking error, it is
necessary to have images with a known motion field. A solution for this is to
use artificially generated images. However, to reliably apply the CMs to real
data, these synthetic images need to have comparable features to the real clin-
ical images. Therefore, we use the database of synthetic MR images (Fig. 2)
first introduced by Márquez-Valle et al. [12], which is based on the cardiac mo-
tion simulator by Arts et al. incorporating a time-dependent model using 13
parameters [18].

The datasets contain simulated sinusoidal SPAMM tagged sequences [2], which
are modelled with signal decay according to [11]. Different image datasets were
created containing either rotation around the long-axis or radially-dependent
contraction, while eliminating longitudinal motion in the model to prevent out-
of-plane motion in the short-axis images. All seven short-axis slices existed of
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Fig. 2. Every other frame of horizontal tagged sequence from the 3rd slice of the set
with contraction. The arrows illustrate a sample of the ground truth and are amplified
three times for visibility.

50 × 50 isotropic pixels and started with the longitudinal axis in the center of
the image, see Fig. 2. The cardiac cycle was split into 16 frames and the tagged
period was set to 6.6 pixels in either horizontal or vertical direction. Rician noise
was added with an SNR of 25, which was constant over time. SNR was defined
as SNR = µ

σ with µ the mean signal and σ the standard deviation of the noise
[19]. Signal decay is modelled to mimic the T1 decay present in MRI. For details
on the synthetic data generation, see [12].

4.2 Statistical Analysis

Significance in SDP variability and bound quality is checked using ANOVA,
which is a powerful statistical tool for detecting differences in performance across
methodologies as well as the impact of different factors or assumptions. We can
apply ANOVA in case our data consists of one or several categorical explana-
tory variables (called factors) and a quantitative response of the variable. The
variability analysis is defined after the ANOVA quantitative score and the differ-
ent factors and methods are determined. Training data (individuals) is grouped
according to such factors, and differences among quantitative response group
means are computed. ANOVA provides a statistical way to assess if such differ-
ences are significant enough for a given confidence level α. In case of having more
than one factor, ANOVA also detects any interaction across the different factors
that might distort the analysis of results for each factor separately. If interaction
across factors is significant, then the multiple ANOVA has to be re-designed as
one factor ANOVA combining all factor groups into a single one to determine
whether or not the response variable depends on the combined factors.

The ANOVA design (variable, individuals and factors) for each quality score
(SDP Predictive Value and SDP Bound Quality) is defined taking as factors
the confidence measures (with groups defined by Ce, Ck) and cardiac motions
(with groups defined by Contraction, Rotation). The sampling for each CM
quality score is given by {σSDPi }NFr

i=1 and {AUCSDPi }NFr
i=1 , respectively. In these

experiments the number of frames, NFr, is set to 40 and they have been ran-
domly sampled across the SA sequences with rotation and contraction motion.
To account for non normality in data, ANOVA is performed in logarithmic scale.
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5 Results and Discussion

Table 1 shows the average variability (first two columns) and risk (second two
columns) for each ANOVA factor group (confidence measures in columns and
cardiac motions in rows). For the two quality measures, the 2-way ANOVA over
CM and cardiac motions does not detect any significant differences for the motion
factor (with p −Mot = 0.18 for σSDPi and p −Mot = 0.84 for AUCSDPi ) nor
interaction (with p− inter = 0.78 for σSDPi and p− inter = 0.68 for AUCSDPi ).
This implies that the capabilities of each CM for error bounding are independent
of the cardiac motion. Conversely, the 2-way ANOVA is significant (with p −
CM = 5 × 10−3 for σSDPi and p − CM = 0.005 for AUCSDPi ) in the column
factor and, thus, the capability of Ce and Ck for error bounding is different. In
particular, and according to the average values reported in Table 1, we conclude
that Ck has a lower variability and risk, regardless of the motion (p − inter >
0.68). This is due to the fact that in uniform areas of the image such as the center,
interpolation errors are low but HARP cannot compute the phase properly which
results in bad correlation.

Table 1. Average variability and risk for each ANOVA factor group.

σSDPi AUCSDPi

Ce Ck Ce Ck

Contraction 2.5× 10−3 0.6× 10−3 5× 10−3 2× 10−3

Rotation 7.2× 10−3 0.56× 10−3 7.3× 10−3 2.7× 10−3

This is confirmed by a multi comparison test with Tukey correction for one
factor given by the two CMs and variable sampling taken for the two motions.
The plots of Fig. 3 show the result of the test for SDP Predictive Value (on
the left) and SDP Bound Quality (on the right). Both plots show intervals for
mean differences. Each level mean is represented as a horizontal line centred at
the mean group and vertically distributed according to the confidence measure.
In the case that there are differences between a selected interval and the others
(one in this case), the non-selected intervals are depicted in red.

Note that it is not possible to give a direct and absolute upper bound of the
optic flow error. However, since the presented framework uses powerful statis-
tical tools, we are able to provide the risk of unbounded pixels for a specific
confidence measure and a sequence with no ground truth. This will enable more
reliable interpretation of HARP tracking results. As a next step, pixels with a
low confidence could be discarded from the computation and interpolated in the
final results. Another option is to include regularisation on the HARP images in
the areas with low confidence.
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Fig. 3. Multicomparison test for SDP Predictive Value and SDP Bound Quality.
Results are in logarithmic scale to account for non normality in the data.

Because the synthetic images used in this study accurately simulate the features
of real tMRI sequences, we expect that our results translate to real tMRI se-
quences fairly well. In the future we will apply this framework to clinical images,
for which (part of the) optic flow is known5, in order to prove that these CMs
indeed bound the error in clinical images as well.

6 Conclusion

In this paper, we propose and test the capability of two confidence measures for
bounding several motion estimation errors of the HARP algorithm in tracking
the cardiac left ventricle in tMRI sequences. A 2-way ANOVA over CMs and
cardiac motions did not detect any significant differences for the motion factor
nor interaction, so that the capabilities of each CM for error bounding are in-
dependent of the type of cardiac motion. Furthermore, we concluded that the
capability of the CM computed from image structure, Ck, has a better error
bounding capability than the CM determined by the energy, Ce. In particu-
lar, the phase is not computed properly in noisy areas, which means it cannot
correlate well to interpolation error.
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