|
Records |
Links  |
|
Author |
H. Martin Kjer; Jens Fagertun; Sergio Vera; Debora Gil |


|
|
Title |
Medial structure generation for registration of anatomical structures |
Type |
Book Chapter |
|
Year |
2017 |
Publication |
Skeletonization, Theory, Methods and Applications |
Abbreviated Journal |
|
|
|
Volume |
11 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.096; 600.075; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MFV2017a |
Serial |
2935 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Ruth Aris; Agnes Borras; Esmitt Ramirez; Rafael Sebastian; Mariano Vazquez |


|
|
Title |
Influence of fiber connectivity in simulations of cardiac biomechanics |
Type |
Journal Article |
|
Year |
2019 |
Publication |
International Journal of Computer Assisted Radiology and Surgery |
Abbreviated Journal |
IJCAR |
|
|
Volume |
14 |
Issue |
1 |
Pages |
63–72 |
|
|
Keywords |
Cardiac electromechanical simulations; Diffusion tensor imaging; Fiber connectivity |
|
|
Abstract |
PURPOSE:
Personalized computational simulations of the heart could open up new improved approaches to diagnosis and surgery assistance systems. While it is fully recognized that myocardial fiber orientation is central for the construction of realistic computational models of cardiac electromechanics, the role of its overall architecture and connectivity remains unclear. Morphological studies show that the distribution of cardiac muscular fibers at the basal ring connects epicardium and endocardium. However, computational models simplify their distribution and disregard the basal loop. This work explores the influence in computational simulations of fiber distribution at different short-axis cuts.
METHODS:
We have used a highly parallelized computational solver to test different fiber models of ventricular muscular connectivity. We have considered two rule-based mathematical models and an own-designed method preserving basal connectivity as observed in experimental data. Simulated cardiac functional scores (rotation, torsion and longitudinal shortening) were compared to experimental healthy ranges using generalized models (rotation) and Mahalanobis distances (shortening, torsion).
RESULTS:
The probability of rotation was significantly lower for ruled-based models [95% CI (0.13, 0.20)] in comparison with experimental data [95% CI (0.23, 0.31)]. The Mahalanobis distance for experimental data was in the edge of the region enclosing 99% of the healthy population.
CONCLUSIONS:
Cardiac electromechanical simulations of the heart with fibers extracted from experimental data produce functional scores closer to healthy ranges than rule-based models disregarding architecture connectivity. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.096; 601.323; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GAB2019a |
Serial |
3133 |
|
Permanent link to this record |
|
|
|
|
Author |
Carles Sanchez; Jorge Bernal; F. Javier Sanchez; Antoni Rosell; Marta Diez-Ferrer; Debora Gil |


|
|
Title |
Towards On-line Quantification of Tracheal Stenosis from Videobronchoscopy |
Type |
Journal Article |
|
Year |
2015 |
Publication |
International Journal of Computer Assisted Radiology and Surgery |
Abbreviated Journal |
IJCAR |
|
|
Volume |
10 |
Issue |
6 |
Pages |
935-945 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; MV; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SBS2015a |
Serial |
2611 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Marçal Rusiñol; Aura Hernandez-Sabate |


|
|
Title |
Feature Extraction by Using Dual-Generalized Discriminative Common Vectors |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
JMIV |
|
|
Volume |
61 |
Issue |
3 |
Pages |
331-351 |
|
|
Keywords |
Online feature extraction; Generalized discriminative common vectors; Dual learning; Incremental learning; Decremental learning |
|
|
Abstract |
In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.084; 600.118; 600.121; 600.129;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DRR2019 |
Serial |
3172 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Marçal Rusiñol; Francesc J. Ferri |


|
|
Title |
Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Mathematical Imaging and Vision |
Abbreviated Journal |
JMIV |
|
|
Volume |
60 |
Issue |
4 |
Pages |
512-524 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.086; 600.130; 600.121; 600.118; 600.129;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2018a |
Serial |
3062 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; David Roche; Agnes Borras; Jesus Giraldo |

|
|
Title |
Terminating Evolutionary Algorithms at their Steady State |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Computational Optimization and Applications |
Abbreviated Journal |
COA |
|
|
Volume |
61 |
Issue |
2 |
Pages |
489-515 |
|
|
Keywords |
Evolutionary algorithms; Termination condition; Steady state; Differential evolution |
|
|
Abstract |
Assessing the reliability of termination conditions for evolutionary algorithms (EAs) is of prime importance. An erroneous or weak stop criterion can negatively affect both the computational effort and the final result. We introduce a statistical framework for assessing whether a termination condition is able to stop an EA at its steady state, so that its results can not be improved anymore. We use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in decision variable space. Our framework is analyzed across 24 benchmark test functions and two standard termination criteria based on function fitness value in objective function space and EA population decision variable space distribution for the differential evolution (DE) paradigm. Results validate our framework as a powerful tool for determining the capability of a measure for terminating EA and the results also identify the decision variable space distribution as the best-suited for accurately terminating DE in real-world applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0926-6003 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.044; 605.203; 600.060; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRB2015 |
Serial |
2560 |
|
Permanent link to this record |
|
|
|
|
Author |
Mireia Sole; Joan Blanco; Debora Gil; Oliver Valero; B. Cardenas; G. Fonseka; E. Anton; Alvaro Pascual; Richard Frodsham; Zaida Sarrate |

|
|
Title |
Time to match; when do homologous chromosomes become closer? |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Chromosoma |
Abbreviated Journal |
CHRO |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
In most eukaryotes, pairing of homologous chromosomes is an essential feature of meiosis that ensures homologous recombination and segregation. However, when the pairing process begins, it is still under investigation. Contrasting data exists in Mus musculus, since both leptotene DSB-dependent and preleptotene DSB-independent mechanisms have been described. To unravel this contention, we examined homologous pairing in pre-meiotic and meiotic Mus musculus cells using a threedimensional fuorescence in situ hybridization-based protocol, which enables the analysis of the entire karyotype using DNA painting probes. Our data establishes in an unambiguously manner that 73.83% of homologous chromosomes are already paired at premeiotic stages (spermatogonia-early preleptotene spermatocytes). The percentage of paired homologous chromosomes increases to 84.60% at mid-preleptotene-zygotene stage, reaching 100% at pachytene stage. Importantly, our results demonstrate a high percentage of homologous pairing observed before the onset of meiosis; this pairing does not occur randomly, as the percentage was higher than that observed in somatic cells (19.47%) and between nonhomologous chromosomes (41.1%). Finally, we have also observed that premeiotic homologous pairing is asynchronous and independent of the chromosome size, GC content, or presence of NOR regions. |
|
|
Address |
August, 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 601.139; 600.145; 600.096 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SBG2022 |
Serial |
3719 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Jaime Lopez-Krahe; Enric Marti |


|
|
Title |
A system to understand hand-drawn floor plans using subgraph isomorphism and Hough transform |
Type |
Book Chapter |
|
Year |
1997 |
Publication |
Machine Vision and Applications |
Abbreviated Journal |
|
|
|
Volume |
10 |
Issue |
3 |
Pages |
150-158 |
|
|
Keywords |
Line drawings – Hough transform – Graph matching – CAD systems – Graphics recognition |
|
|
Abstract |
Presently, man-machine interface development is a widespread research activity. A system to understand hand drawn architectural drawings in a CAD environment is presented in this paper. To understand a document, we have to identify its building elements and their structural properties. An attributed graph structure is chosen as a symbolic representation of the input document and the patterns to recognize in it. An inexact subgraph isomorphism procedure using relaxation labeling techniques is performed. In this paper we focus on how to speed up the matching. There is a building element, the walls, characterized by a hatching pattern. Using a straight line Hough transform (SLHT)-based method, we recognize this pattern, characterized by parallel straight lines, and remove from the input graph the edges belonging to this pattern. The isomorphism is then applied to the remainder of the input graph. When all the building elements have been recognized, the document is redrawn, correcting the inaccurate strokes obtained from a hand-drawn input. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG;IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ LLM1997a |
Serial |
1566 |
|
Permanent link to this record |
|
|
|
|
Author |
David Roche; Debora Gil; Jesus Giraldo |


|
|
Title |
Mathematical modeling of G protein-coupled receptor function: What can we learn from empirical and mechanistic models? |
Type |
Book Chapter |
|
Year |
2014 |
Publication |
G Protein-Coupled Receptors – Modeling and Simulation Advances in Experimental Medicine and Biology |
Abbreviated Journal |
|
|
|
Volume |
796 |
Issue |
3 |
Pages |
159-181 |
|
|
Keywords |
β-arrestin; biased agonism; curve fitting; empirical modeling; evolutionary algorithm; functional selectivity; G protein; GPCR; Hill coefficient; intrinsic efficacy; inverse agonism; mathematical modeling; mechanistic modeling; operational model; parameter optimization; receptor dimer; receptor oligomerization; receptor constitutive activity; signal transduction; two-state model |
|
|
Abstract |
Empirical and mechanistic models differ in their approaches to the analysis of pharmacological effect. Whereas the parameters of the former are not physical constants those of the latter embody the nature, often complex, of biology. Empirical models are exclusively used for curve fitting, merely to characterize the shape of the E/[A] curves. Mechanistic models, on the contrary, enable the examination of mechanistic hypotheses by parameter simulation. Regretfully, the many parameters that mechanistic models may include can represent a great difficulty for curve fitting, representing, thus, a challenge for computational method development. In the present study some empirical and mechanistic models are shown and the connections, which may appear in a number of cases between them, are analyzed from the curves they yield. It may be concluded that systematic and careful curve shape analysis can be extremely useful for the understanding of receptor function, ligand classification and drug discovery, thus providing a common language for the communication between pharmacologists and medicinal chemists. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Netherlands |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0065-2598 |
ISBN |
978-94-007-7422-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
IAM @ iam @ RGG2014 |
Serial |
2197 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Agnes Borras; Sergio Vera; Miguel Angel Gonzalez Ballester |


|
|
Title |
A Validation Benchmark for Assessment of Medial Surface Quality for Medical Applications |
Type |
Conference Article |
|
Year |
2013 |
Publication |
9th International Conference on Computer Vision Systems |
Abbreviated Journal |
|
|
|
Volume |
7963 |
Issue |
|
Pages |
334-343 |
|
|
Keywords |
Medial Surfaces; Shape Representation; Medical Applications; Performance Evaluation |
|
|
Abstract |
Confident use of medial surfaces in medical decision support systems requires evaluating their quality for detecting pathological deformations and describing anatomical volumes. Validation in the medical imaging field is a challenging task mainly due to the difficulties for getting consensual ground truth. In this paper we propose a validation benchmark for assessing medial surfaces in the context of medical applications. Our benchmark includes a home-made database of synthetic medial surfaces and volumes and specific scores for evaluating surface accuracy, its stability against volume deformations and its capabilities for accurate reconstruction of anatomical volumes. |
|
|
Address |
Sant Petersburg; Russia; July 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-39401-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICVS |
|
|
Notes |
IAM; 600.044; 600.060 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GBV2013 |
Serial |
2300 |
|
Permanent link to this record |