toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Patricia Marquez; H. Kause; A. Fuster; Aura Hernandez-Sabate; L. Florack; Debora Gil; Hans van Assen edit   pdf
doi  isbn
openurl 
  Title (up) Factors Affecting Optical Flow Performance in Tagging Magnetic Resonance Imaging Type Conference Article
  Year 2014 Publication 17th International Conference on Medical Image Computing and Computer Assisted Intervention Abbreviated Journal  
  Volume 8896 Issue Pages 231-238  
  Keywords Optical flow; Performance Evaluation; Synthetic Database; ANOVA; Tagging Magnetic Resonance Imaging  
  Abstract Changes in cardiac deformation patterns are correlated with cardiac pathologies. Deformation can be extracted from tagging Magnetic Resonance Imaging (tMRI) using Optical Flow (OF) techniques. For applications of OF in a clinical setting it is important to assess to what extent the performance of a particular OF method is stable across di erent clinical acquisition artifacts. This paper presents a statistical validation framework, based on ANOVA, to assess the motion and appearance factors that have the largest in uence on OF accuracy drop.
In order to validate this framework, we created a database of simulated tMRI data including the most common artifacts of MRI and test three di erent OF methods, including HARP.
 
  Address Boston; USA; September 2014  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-14677-5 Medium  
  Area Expedition Conference STACOM  
  Notes IAM; ADAS; 600.060; 601.145; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ MKF2014 Serial 2495  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Marçal Rusiñol; Francesc J. Ferri edit   pdf
doi  openurl
  Title (up) Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction Type Journal Article
  Year 2018 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 60 Issue 4 Pages 512-524  
  Keywords  
  Abstract This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.086; 600.130; 600.121; 600.118; 600.129;IAM Approved no  
  Call Number Admin @ si @ DMH2018a Serial 3062  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Marçal Rusiñol; Aura Hernandez-Sabate edit   pdf
doi  openurl
  Title (up) Feature Extraction by Using Dual-Generalized Discriminative Common Vectors Type Journal Article
  Year 2019 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 61 Issue 3 Pages 331-351  
  Keywords Online feature extraction; Generalized discriminative common vectors; Dual learning; Incremental learning; Decremental learning  
  Abstract In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.084; 600.118; 600.121; 600.129;IAM Approved no  
  Call Number Admin @ si @ DRR2019 Serial 3172  
Permanent link to this record
 

 
Author Josep Llados; Horst Bunke; Enric Marti edit   pdf
url  doi
openurl 
  Title (up) Finding rotational symmetries by cyclic string matching Type Journal Article
  Year 1997 Publication Pattern recognition letters Abbreviated Journal PRL  
  Volume 18 Issue 14 Pages 1435-1442  
  Keywords Rotational symmetry; Reflectional symmetry; String matching  
  Abstract Symmetry is an important shape feature. In this paper, a simple and fast method to detect perfect and distorted rotational symmetries of 2D objects is described. The boundary of a shape is polygonally approximated and represented as a string. Rotational symmetries are found by cyclic string matching between two identical copies of the shape string. The set of minimum cost edit sequences that transform the shape string to a cyclically shifted version of itself define the rotational symmetry and its order. Finally, a modification of the algorithm is proposed to detect reflectional symmetries. Some experimental results are presented to show the reliability of the proposed algorithm  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ LBM1997a Serial 1562  
Permanent link to this record
 

 
Author Joan M. Nuñez; Debora Gil; Fernando Vilariño edit  doi
openurl 
  Title (up) Finger joint characterization from X-ray images for rheymatoid arthritis assessment Type Conference Article
  Year 2013 Publication 6th International Conference on Biomedical Electronics and Devices Abbreviated Journal  
  Volume Issue Pages 288-292  
  Keywords Rheumatoid Arthritis; X-Ray; Hand Joint; Sclerosis; Sharp Van der Heijde  
  Abstract In this study we propose amodular systemfor automatic rheumatoid arthritis assessment which provides a joint space width measure. A hand joint model is proposed based on the accurate analysis of a X-ray finger joint image sample set. This model shows that the sclerosis and the lower bone are the main necessary features in order to perform a proper finger joint characterization. We propose sclerosis and lower bone detection methods as well as the experimental setup necessary for its performance assessment. Our characterization is used to propose and compute a joint space width score which is shown to be related to the different degrees of arthritis. This assertion is verified by comparing our proposed score with Sharp Van der Heijde score, confirming that the lower our score is the more advanced is the patient affection.  
  Address Barcelona; February 2013  
  Corporate Author Thesis  
  Publisher SciTePress Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area 800 Expedition Conference BIODEVICES  
  Notes IAM;MV; 600.057; 600.054;SIAI Approved no  
  Call Number IAM @ iam @ NGV2013 Serial 2196  
Permanent link to this record
 

 
Author Sergio Vera edit   pdf
openurl 
  Title (up) Finger joint modelling from hand X-ray images for assessing rheumatoid arthritis Type Report
  Year 2010 Publication CVC Technical Report Abbreviated Journal  
  Volume 164 Issue Pages  
  Keywords Rheumatoid arthritis; joint detection; X-ray; Van der Heijde score  
  Abstract Rheumatoid arthritis is an autoimmune, systemic, inflammatory disorder that mainly af- fects bone joints. While there is no cure for this disease, continuous advances on palliative treatments require frequent verification of patient’s illness evolution. Such evolution is mea- sured through several available semi-quantitative methods that require evaluation of hand and foot X-ray images. Accurate assessment is a time consuming task that requires highly trained personnel. This hinders a generalized use in clinical practice for early diagnose and disease follow-up. In the context of the automatization of such evaluation methods we present a method for detection and characterization of finger joints in hand radiography images. Several measures for assessing the reduction of joint space width are proposed. We compare for the first time such measures to the Van der Heijde score, the gold standard method for rheumatoid arthritis assessment. The proposed method outperforms existing strategies with a detection rate above 95%. Our comparison to Van der Heijde index shows a promising correlation that encourages further research.  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Bellaterra 01893, Barcelona, Spain Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ Ver2010 Serial 1661  
Permanent link to this record
 

 
Author H. Martin Kjer; Jens Fagertun; Sergio Vera; Debora Gil; Miguel Angel Gonzalez Ballester; Rasmus R. Paulsena edit   pdf
url  openurl
  Title (up) Free-form image registration of human cochlear uCT data using skeleton similarity as anatomical prior Type Journal Article
  Year 2016 Publication Patter Recognition Letters Abbreviated Journal PRL  
  Volume 76 Issue 1 Pages 76-82  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.060 Approved no  
  Call Number Admin @ si @ MFV2017b Serial 2941  
Permanent link to this record
 

 
Author Oriol Pujol; Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title (up) Fundamentals of Stop and Go active models Type Journal Article
  Year 2005 Publication Image and Vision Computing Abbreviated Journal  
  Volume 23 Issue 8 Pages 681-691  
  Keywords Deformable models; Geodesic snakes; Region-based segmentation  
  Abstract An efficient snake formulation should conform to the idea of picking the smoothest curve among all the shapes approximating an object of interest. In current geodesic snakes, the regularizing curvature also affects the convergence stage, hindering the latter at concave regions. In the present work, we make use of characteristic functions to define a novel geodesic formulation that decouples regularity and convergence. This term decoupling endows the snake with higher adaptability to non-convex shapes. Convergence is ensured by splitting the definition of the external force into an attractive vector field and a repulsive one. In our paper, we propose to use likelihood maps as approximation of characteristic functions of object appearance. The better efficiency and accuracy of our decoupled scheme are illustrated in the particular case of feature space-based segmentation.  
  Address  
  Corporate Author Thesis  
  Publisher Butterworth-Heinemann Place of Publication Newton, MA, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0262-8856 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB;HuPBA Approved no  
  Call Number IAM @ iam @ PGR2005 Serial 1629  
Permanent link to this record
 

 
Author Jaume Garcia edit   pdf
openurl 
  Title (up) Generalized Active Shape Models Applied to Cardiac Function Analysis Type Report
  Year 2004 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 78 Pages  
  Keywords Cardiac Analysis; Deformable Models; Active Contour Models; Active Shape Models; Tagged MRI; HARP; Contrast Echocardiography.  
  Abstract Medical imaging is very useful in the assessment and treatment of many diseases. To deal with the great amount of data provided by imaging scanners and extract quantitative information that physicians can interpret, many analysis algorithms have been developed. Any process of analysis always consists of a first step of segmenting some particular structure. In medical imaging, structures are not always well defined and suffer from noise artifacts thus, ordinary segmentation methods are not well suited. The ones that seem to give better results are those based on deformable models. Nevertheless, despite their capability of mixing image features together with smoothness constraints that may compensate for image irregularities, these are naturally local methods, i. e., each node of the active contour evolve taking into account information about its neighbors and some other weak constraints about flexibility and smoothness, but not about the global shape that they should find. Due to the fact that structures to be segmented are the same for all cases but with some inter and intra-patient variation, the incorporation of a priori knowledge about shape in the segmentation method will provide robustness to it. Active Shape Models is an algorithm based on the creation of a shape model called Point Distribution Model. It performs a segmentation using only shapes similar than those previously learned from a training set that capture most of the variation presented by the structure. This algorithm works by updating shape nodes along a normal segment which often can be too restrictive. For this reason we propose a generalization of this algorithm that we call Generalized Active Shape Models and fully integrates the a priori knowledge given by the Point Distribution Model with deformable models or any other appropriate segmentation method. Two different applications to cardiac imaging of this generalized method are developed and promising results are shown.  
  Address CVC (UAB)  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Gar2004 Serial 1513  
Permanent link to this record
 

 
Author Debora Gil edit   pdf
isbn  openurl
  Title (up) Geometric Differential Operators for Shape Modelling Type Book Whole
  Year 2004 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Medical imaging feeds research in many computer vision and image processing fields: image filtering, segmentation, shape recovery, registration, retrieval and pattern matching. Because of their low contrast changes and large variety of artifacts and noise, medical imaging processing techniques relying on an analysis of the geometry of image level sets rather than on intensity values result in more robust treatment. From the starting point of treatment of intravascular images, this PhD thesis ad- dresses the design of differential image operators based on geometric principles for a robust shape modelling and restoration. Among all fields applying shape recovery, we approach filtering and segmentation of image objects. For a successful use in real images, the segmentation process should go through three stages: noise removing, shape modelling and shape recovery. This PhD addresses all three topics, but for the sake of algorithms as automated as possible, techniques for image processing will be designed to satisfy three main principles: a) convergence of the iterative schemes to non-trivial states avoiding image degeneration to a constant image and representing smooth models of the originals; b) smooth asymptotic behav- ior ensuring stabilization of the iterative process; c) fixed parameter values ensuring equal (domain free) performance of the algorithms whatever initial images/shapes. Our geometric approach to the generic equations that model the different processes approached enables defining techniques satisfying all the former requirements. First, we introduce a new curvature-based geometric flow for image filtering achieving a good compromise between noise removing and resemblance to original images. Sec- ond, we describe a new family of diffusion operators that restrict their scope to image level curves and serve to restore smooth closed models from unconnected sets of points. Finally, we design a regularization of snake (distance) maps that ensures its smooth convergence towards any closed shape. Experiments show that performance of the techniques proposed overpasses that of state-of-the-art algorithms.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Barcelona (Spain) Editor Jordi Saludes i Closa;Petia Radeva  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84-933652-0-3 Medium prit  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GIL2004 Serial 1517  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: