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Abstract

An efficient snake formulation should conform to the idea of picking the smoothest curve among all the shapes approximating an object of

interest. In current geodesic snakes, the regularizing curvature also affects the convergence stage, hindering the latter at concave regions. In

the present work, we make use of characteristic functions to define a novel geodesic formulation that decouples regularity and convergence.

This term decoupling endows the snake with higher adaptability to non-convex shapes. Convergence is ensured by splitting the definition of

the external force into an attractive vector field and a repulsive one. In our paper, we propose to use likelihood maps as approximation of

characteristic functions of object appearance. The better efficiency and accuracy of our decoupled scheme are illustrated in the particular case

of feature space-based segmentation.
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1. Introduction

Active contours ([1,3,8], to mention just a few) are well-

known tools in computer vision for image segmentation [7,

9,12,14] and shape recovery. These techniques interpret

low-level information (i.e. edge points) under general high-

level assumptions/constraints to assure well possedness of

the segmentation problem. In particular, snakes are defined

by internal and external constraints to deform a curve until it

adapts to the object of interest. The internal constraints

control continuity and smoothness of the snake, meanwhile

the external ones are responsible for adjusting to the image

features. In general, there are two different approaches in

current snakes formulations: the parametric (physics-based)

and the geometric (geodesic) definition.

Parametric deformable models [8] use Newton mech-

anics laws to define the internal constraints of the model. In

these physical terms, such constraints are given in terms of

elasticity and stretching of the snake. By working with an

explicit parametrization of the curve, the model restricts the

search space of the segmentation solutions to single objects.
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Although there are some parametric schemes [10] dealing

with topological changes, they required computing a new

parametrization at each iteration, resulting in time consum-

ing algorithms. An alternative to physics-based snakes are

the geodesic active contours [1]. Geodesic snakes are based

on the theory of curve evolution and level sets methods [11].

In this geometric setting, the snake deforms in a Riemannian

surface until its length, dependant on image features, is

minimum. Its implicit level sets formulation [11] can

naturally deal with topological changes during the snake

evolution. This is a main advantage in those cases where the

topology of the target object is not known a priori.

In most snake applications of the segmentation problem,

the metric is defined based on the image gradient in order to

detect edges. The geodesic snake deformation is determined

by two distinct terms in its evolution equation. The first term

is the normal component of the gradient of the metric and

rules convergence to contours. The second one, dependant

on the snake curvature, gives regularity to the snake and

defines its motion at null gradient regions. That is, it also

influences on the convergence scheme. The double role of

the curvature term has some disadvantages: on one hand,

because it is a second order term, it hinders the numeric

scheme; on the other hand, it troubles snake convergence to

concave areas. The usual way to overcome poor conver-

gence to non-convex shapes is to add a constant motion

term, the balloon force [3], that pushes the snake into
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concave regions. In order to guarantee convergence into

such regions, its magnitude there should be greater than the

absolute value of the curvature. A major inconvenience is

that the former requirement troubles stopping the snake at

the desired contour. Because balloon forces correspond to a

minimization of the area enclosed by the snake, they can be

embedded in a region-based scheme.

Region-based methods are born to introduce region

information in the geodesic formulation. They aim at

finding a partition of the image such that the descriptors of

each of the regions conform to a given ‘homogeneity’

criterion. It follows that the force guiding the snake must be

derived from the competition of the descriptors. In Ronfard

[17], the velocity function is proportional to the difference

of simple statistical features. In Zhu [24] and Paragios and

Deriche [12], the authors define the region evolution as a

quotient of probabilities corresponding to different regions.

In Yezzi et al. [21], a dynamical approach is defined in

which the evolution of the curve is described by the

difference of mean gray levels inside and outside the

evolving front at each iteration. In the same way, Jehan-

Besson et al. [7] propose a difference of simple statistics,

variance and covariance matrix, inside and outside the

curve, also recomputing that measures at each iteration.

Chakraborty et al. [2] consider an evolution using a Fourier

parametrization over the original image and a previously

classified image regions. Most of the methods are based on

simple non-supervised descriptors of image regions. This

limits its applicability to segmentation of simple images.

However, complex scenes such as natural and real images

need more accurate descriptors for their segmentation. In

this way, supervised feature extraction schemes are more

suitable for the task [12,18].

Considering the general problem of region-based

segmentation, we propose a new geodesic snake formu-

lation that assures a more efficient behavior. Given that

convergence and regularity are the key issues of the snake

formulation, we propose a new definition where the terms

ruling these properties are decoupled. As a result, the

curvature term does not interfere in the convergence process

but restricts its role to the shape regularity in the last stages

of the snake deformation. By removing the influence of the

snake curvature from the convergence step, any global

vector field properly defining the target contour curve as its

set of equilibrium points ensures convergence. However,

current external forces either restrict to a band [1] (non-

global) around object contours or have saddle points [22]

(target curve not properly defined) that prevent the snake

from entering into concave regions. We propose using the

decoupling strategy for the definition of a global vector field

having the target curve as the set of equilibrium points. It

can be seen that any vector field fulfilling the above

requirement splits into an exterior attractor vector field (GO

term) and an inner repulsive one (STOP term) which sum

cancels on the curve of interest. This is the milestone in the

definition of our Stop and Go snakes: defining separately
the GO and the STOP term and glue them together by means

of a characteristic function. Because we want to ensure

snake convergence whatever curve concavity is, a balloon

force will be our GO term. Since the curvature term has

been removed from the convergence step, there is no

restriction on the magnitude of this force, which prevents

the snake from collapsing to a point. For the STOP vector

field any standard external force restricted to the object

interior suffices. Its choice hinges upon the particular

segmenting problem.

A mask defining the object of interest would be the ideal

tool to bound the scope of the curvature term and to perform

any decoupling. To address segmentation of real images, we

propose to use likelihood maps as an approximation of the

object characteristic function. A likelihood map represents

the likelihood value of each pixel of the image. Since it also

characterizes the object of interest we introduce its use as a

STOP term. In this manner the Stop and Go scheme

presented in this paper is particularly suited for feature

space-based segmentation, such as textures [12,14,16],

color [19,24], motion [13], etc.

Our new formulation has several advantages over current

snake schemes. On one hand, except for the very last

refinement steps, the technique admits arbitrary large time

increments in the iterative Euler scheme used in its

implementation. On the other, by removing curvature

influence from the convergence process, we can build a

robust vector field to be used as an external force/attraction

term that ensures convergence but, at the same time, snake

stabilization. The use of likelihood maps also introduces a

great advantage by allowing any scheme capable to produce

a likelihood map to operate in our snake framework.

The topics are addressed in the following order. Section 2

describes the background of geodesic and region-based

snakes. Section 3 gives the fundamentals of the formulation

of the Stop and Go snakes. Section 4 describes the

likelihood map space as an alternative to the classic contour

and mask spaces as well as the numeric issues concerning

Stop and Go implementation. Section 5 discusses the

experimental results and Section 6 concludes the article.
2. Analysis of current geometric snakes

Most of current snakes define curve evolution within an

energy minimization framework. In this context, the energy

functional should achieve a compromise between adjusting

to image features and achieving curve regularity. There are

two main tendencies for the definition of the minimizing

energy.

2.1. Geodesic formulations in a contour space

General geodesic snake formulation defines the evol-

ution of a snake within an energy minimization framework.

In particular, the solution to the problem is the curve (G) of
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minimum length in a Riemannian surface with a metric (g)

depending on the image contrast changes. It follows that the

snake, G, evolves according to

vG

vt
Z ðg,k K hVg; ðniÞ,ðn with g Z

1

1 C jVuj2
(1)

where k is the curvature of G, ðn is its inward unit normal and

h,i stands for the scalar product of two vectors.

We can give the following interpretation to each of the

terms involved in the above formula. The term hVg; ðniðn is a

vector field defined on the curve pointing to the region of

interest that attracts the snake to the object boundary. Since

its computation essentially relies on image edges, from a

vector flow point of view, it can be considered as a Static

Vector Field locally defining the target object. The

curvature term, g,kðn, influences different aspects of the

snake evolution. On one hand, it defines its motion when it

is located far away from the object boundaries. Since it

depends on the evolving snake, it acts as a Dynamic Vector

Field in the convergence process. On the other hand, it

serves as a curve regularizing term, ensuring continuity of

the final segmenting snake in a similar fashion [23] the

membrane term of parametric snakes does. Finally, it gives

the process a smooth behavior and ensures continuity during

the deformation, in the sense that it prevents shock

formation [5]. However, incorporating the curvature term

into the convergence scheme has some disadvantages. First,

it difficulties the snake convergence to concave areas.

Second, guidance through the curvature is extremely slow,

so in spite of giving regularity to the evolution equation, it

hinders the numerical scheme since time increment is

bounded by the second order term [20].

The main problem of (1) is that convergence to the object

of interest relies on the properties of the external field. Even

considering a regularization [22] of the external force,

concave regions such that the unit tangent turns around

more than p between consecutive inflexion points of the

object contour, can not be reached [6]. In order to increase

convergence to concavities and to speed up the evolution, a

constant balloon force velocity term, V0, corresponding to

area minimization is added:

vG

vt
Z ðg,k CV0 K hVg; ðniÞ,ðn (2)

Notice that, in order to ensure that the scheme will stop at

the boundary of interest, an equilibrium between the

constant shrinking velocity, V0, and the static vector field,

Vg, must be achieved. One easily realizes that, should this

condition be satisfied, incorporating the curvature term into

the convergence scheme constitutes a significant drawback.

For V0 must overpass the magnitude of k to enter into

concave regions but, at the same time, it should be kept

under minjhVg; ðnij (minimum taken on the curve to detect!)

to guarantee non-trivial steady states. This dichotomy
motivates the bounding the scope of V0 to a given image

region [7].

2.2. Snake formulation in a region scheme

The ‘region terms’ [7] are added to the minimization

scheme as follows:

EðUin;Uout;GÞ Z
Ð Ð

Uin
gðUinÞdxdy C

Ð Ð
Uout

gðUoutÞdxdy

C
Ð

G gðGÞds

where Uin and Uout refer to the inside and outside of the

region of interest. There are two different approaches to

determine the region: a ‘pseudo-static’ approach and a

dynamic one. In the first case, the attraction term that guides

the evolution of each point in the curve is previously

computed and kept fixed during the evolution [12,24]. In the

second one, measures of the regions descriptors depend on

the evolving curve [2,21], so that all parameters must be

updated at each iteration.

Region-based approaches usually rely on a pseudo-mask

behavior [24], which can be implemented by considering:

Mðx; yÞ Z
a if PBackgroundOPTarget

Ka otherwise

(

and evolving the snake using:

vG

vt
Z signðIÞ,ðn (3)

We propose to reformulate (2) decoupling the regularity

and convergence terms and embedding the scheme in a

region-based framework.
3. Stop and Go snakes

Putting aside the energy minimization interpretation, the

evolution of the curve is basically guided by an external

force which defines an equilibrium state of the evolution.

Whatever the external vector field, from the point of view of

the evolving curve, achieving an equilibrium state can be

decoupled into two stages: a straight forward advancing

front defined outside the region of interest, and an inside

region term opposed to it. Evolution stops if these two

forces cancel along the curve of interest. Standard snake

vector fields will serve to build an external force ensuring

convergence and a mask of the region of interest, I, will be

used to perform any vector decoupling/restriction.

3.1. Basics of Stop and Go formulation

In any minimization process, the snake deforms under

two different vector flows: an attractor vector field (GO)

moving the curve towards the target and a repulsive

one (STOP) making that evolution stop. By means of
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the characteristic function of the region of interest, namely

R:

Iðx; yÞ Z
1 if ðx; yÞ2R

0 otherwise

(

these two motions can be decoupled. Let us assume once

again that the evolving curve is outside the region of

interest. Then, in a region-based approach, the GO term

corresponds to an area minimization process restricted to the

outside of R:

VGO Z ð1 K IÞ,V0,ðn (4)

The above equation creates a dynamic ‘inward’ motion to

the region of interest, in the same fashion of that of ‘balloon’

snakes. In order to define the outward ‘motion’, notice that

there is no need to define the STOP field on the whole

image. The scheme will work, as long as this vector is well

defined in the environment of the contour we are looking

for. Therefore, the STOP term can be defined by the

‘outward’ gradient of any function, namely g, locally

defining the contours of the object of interest:

VSTOP Z I,hVg; ðniðn (5)

It follows that the evolution of an outward initial curve to

the region of interest in Stop and Go formulation is given in

the following terms:

vG

vt
Z hI,Vg; ðniðn|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Stop

CV0,ð1 K IÞ,ðn|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Go

(6)

As in the case of balloon snakes, the sum of both terms

defines an (oscillating) equilibrium solution if we assure that

V0 C hVg; ðni%0 on the boundary of R. The fact that the term

V0ð1K IÞ,ðn comes from an area minimization process has

the following effects. First of all, by varying the V0

parameter we will be able to ignore sparse responses of

the potential g of small area, such as spurious noise. Second,

it can swallow low valued areas of the potential.

The drawings in Fig. 1 illustrate the grounds of a Stop

and Go field. A standard static field, Vg, having the circle as

minimum is displayed in Fig. 1(a). Its decomposition into

the repulsive, I$Vg and attractive, (1KI)$Vg, vector fields is

shown, respectively, in Fig. 1(b) and (c). We observe that,

like in any geodesic formulation, the VSTOP term given by
Fig. 1. External force decoupling into Stop and Go terms. (a) Static externa
formula (5) corresponds to the projection of the repulsive

vector field onto the snake unit normal, ðn. Finally, Fig. 1(d)

represents a dynamic VGO field for the case of a shrinking

ellipse placed outside the target gray circle.
3.2. Improving Stop and Go with a regularizing term

The ‘Stop and Go’ approach leads a curve to the desired

boundary, however some smoothness and continuity is

desired on the final model. Because regularity is only

necessary in the final steps of the snake deformation, we will

bound its scope to a neighborhood of the target object. Such

restriction can be performed by means of a smoothed

version of the mask �I ZGs � I; for Gs a gaussian filter with

standard deviation s. Adding this regularity term to (6) the

final evolution equation of Stop and Go snakes yields:

Gt ZðIhVg; ðniCV0ð1KIÞÞ,ðn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Stop and Go

C ak�I ðn|ffl{zffl}
Reg: term

(7)

The above formulation can be interpreted as selecting

among all curves approaching the boundary of the target

object, those complying to a given degree of regularity.

Hence our formulation highly resembles that of parametric

snakes, in the sense that regularity and convergence have

been decoupled.

Reducing the action range of the regularizing term,

endows curvature with a radically different role than it had

in geodesic snakes. Firstly, it is a strictly regularizing term

(like parametric snakes internal energy), which easies

controlling its importance on the final curve by means of

the weighting a. Secondly, since its scope is bounded to the

last steps of the snake deformation, it does not trouble

convergence to the contour concave regions. Finally, by

restricting curvature to a band around contours, the

integration step in an Euler numeric scheme, related to

second order terms [5], is not a critical value. It follows that,

except for the very last refinement steps, it can be arbitrarily

high, so that speed of convergence increases. The above

comments makes the scheme given by (7) conform to the

following naive idea: obtaining a rough representation of

objects should be computationally efficient, only requiring

regularity is computationally expensive.

An important remark on the regularity of the final curve

should be made. It is well known that the curvature term
l force. (b) Repulsive term. (c) Attractive term. (d) Dynamic go term.



Fig. 2. Open drop. (a) Snake without regularity term and (b) Stop and Go

snake.
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alone only guaranties continuity of the curve, preventing the

snake from leaking into small holes. However, our scheme

takes advantage of a synergy between the Stop and Go

formulation and the curvature term to introduce a higher

smoothness in the final shape. If we reformulate (7) as:

vG

vt
Z ðV0 C IhVg; ðniÞðn|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Convergence

C I,ðak KV0Þðn|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Regularizing term

we find that, if a small V0 ensures convergence, the snake

regularity follows from the competition between curvature

and V0 near the object boundary. We argue that such

competition yields our model a smoothness close to that of

parametric snakes. Note that there is a substantial difference

in geodesic schemes, which both terms contribute in the

convergence stage and only curvature affects in the snake

regularity.

Fig. 2 illustrates the effect of the competition between V0

and curvature. The Stop and Go active model is shown

deforming over a contour map, thus serving as an

illustration of its usage in this kind of space. Fig. 2(a)

shows the final snake obtained without the regularizing term

and Fig. 2(b) the result of adding it. As in geodesic snakes,

the curvature prevents the snake from leaking through small

holes yielding a closed model of the drop. But, notice that

the curve in Fig. 2(b) is smoother than the linear geodesic

interpolation.
4. Stop and Go snakes design
4.1. Term decoupling

Lacking of object masks in practical applications

motivates searching for an alternate to perform the

decoupling needed in the Stop and Go snakes. In the

general case, any map defining the object to detect as a local

extremum (minimum or maximum) and taking negligible

values outside the environs of the object would serve. For

instance, the response of the image to a bank of filters or

characterizing features are suitable maps. In this paper, we
will consider likelihood maps as an approximation of object

masks.

The likelihood map is defined as the likelihood value for

each of the pixels of a given space to represent the target

object. We can think of likelihood values as pseudo-

probabilities, which represent a continuous pseudo-density

function. Likelihood maps contain information about the

accuracy of the classification to avoid false positive

classified regions. This solves the deficiencies of the classic

region approaches, which use heuristically defined vector

fields to create the velocity term of the snake. Usually, these

approaches need previous classifications or contain implicit

classification schemes, on which there is little control over

the false positive and false negative regions unless some

(regularizing) region term ([12], Zhu [24]) is added.

Our likelihood map is computed by means of the

following standard approach [4]. We adjust a mixture of

gaussian to the values describing textures in the feature

space (probability density function estimation). The mixture

of gaussians is given by:

MGðx;QÞ Z
Xk

rZ1

arGmr ;sr
ðxÞ

where Gmr ;sr
ðxÞ is a gaussian density function, k is the

number of gaussians involved, QZ(m1,.,mk, s1,.,sk) are

the gaussians’ mean values and standard deviation matrices.

The model is adjust using an expectation maximization

procedure [4]. Unfortunately, the former standard way of

computing the likelihood map has as a main drawback its

lack of accuracy at the real boundaries of the region of

interest. To be precise, the set of regions with high

likelihood value representing the objects of interest are

smaller in size than the true objects. We improve its

accuracy by using a two-class enhancing procedure or a

sharpening using connected components with max-trees

([14,15]) in order to topologically enhance contours.

In Fig. 3(b)–(d), different likelihood maps for the

textured tetra-foil of Fig. 3(a) are shown. The standard

likelihood map resulting from the mixture model is

displayed in Fig. 3(b). Finally, Fig. 3(c) shows the enhanced

likelihood map using the two-class enhancing procedure. As

one can see, the borders are better defined and some low

likelihood areas which belong to the tetra-foil region are

emphasized. Fig. 3(d) shows the result after the topological

enhancement. We can observe that the borders are clearly

defined and the low likelihood regions are further

emphasized keeping the general topology of the tetra-foil

unchanged. Therefore, our estimation of the object mask

will be a version of the likelihood map, �L, normalized

between 0 and 1. That is, replacing I by �L in the Stop and Go

formulation proposed in Section 3, we obtain the following

evolution equation:

vG

vt
Z ak �L,ðn C �LhVg; ðni,ðn CV0ð1 K �LÞ,ðn



Fig. 3. Different likelihood map enhancements. (a) Original image. (b) Likelihood map associated to the tetra-foil figure texture. (c) Two class enhancing result

of the likelihood map. (d) Topological enhanced likelihood map.
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It only remains to define the STOP term, �L,Vg, that defines

the object of interest.
4.2. Using likelihood maps to define the Stop and Go field

The choice of the function g depends on the particular

segmenting problem we handle. In a contour-based space

setting, the object of interest is defined by image contrast

changes, meanwhile, likelihood maps are more suitable in

the case of more complex features (such as, statistical,

texture-based, motion-based, color-based, etc.). We propose

basing the STOP term on likelihood maps for feature

spaces-based segmentation and define the STOP term as

Vð1K �LÞ. Besides, since the former gradient is negligible

outside a band around contours, we can merge the two

STOP factors and use:

vG

vt
Z ak �L,ðn CbhVð1 K �LÞ; ðni,ðn CV0ð1 K �LÞ,ðn (8)

4.3. Stop and Go numeric formulation

Evolution of an initial snake G0 under (8) is implemented

using the Level Sets [11] formulation. That is, given any

initial surface (f0) properly defining the interior of G0, the

snake evolution at time t coincides with the 0 level contour

of the solution to:

vf

vt
Z a �L div

Vf

jVfj

	 

CV0ð1K �LÞ

	 

jVfjChVð1K �LÞ;Vfi

The explicit Euler scheme we use in the numeric

implementation of the former equation is given by:

ftC1 Zft C a �L
uxxu2

y K2uxyuxuy Cuyyu2
x

jVuj2

	

CV0ð1 K �LÞjVftjC hVð1 K �LÞ;Vfti



Dt

(9)

where ft stands for the solution at time t and derivatives are

computed using centered finite differences. Notice that the

speed of convergence hinges upon the magnitude of the time
step Dt, the higher it is, the less iterations the algorithm

needs. Accuracy is determined by V0.
5. Stop and Go performance

We have split experimental assessment of Stop and Go

performance into two blocks. First, a comparison to other

geometric snakes is carried out; second, we show robustness

of our formulation to the critical parameters, Dt and V0. The

methodology of comparison we have used is as follows.

5.1. Experimental setting

We have compared our approach with a standard

geodesic (2) and region-based (3) approaches. For the

region-based approach we have used a thresholded version

of the estimated characteristic function and for geodesic

snakes its edges. All methods have been implemented using

an explicit Euler scheme and initial snakes located at the

frame of the image.

Experiments focus on determining snake efficiency in

terms of accuracy and speed of convergence. These

quantities will be measured as follows:

† Snake accuracy is given by the maximum and mean

distances to the target curve. Maximum distances is the

measure that best detects failure to enter into concave

regions.

† Speed of convergence corresponds to the number of

iterations necessary to stabilize the snake. We recall that

in an explicit Euler scheme, the number of iterations is

proportional to the time step, Dt, used.
5.2. Comparison results

We have tested the different methods on the tetra-foil

(Fig. 4) and a highly non-convex shape (Fig. 6); the first

shape to assess accuracy and regularity of the methods and

the second one their convergence. In all cases, parameters

are chosen so that the algorithms reach their optimal



Fig. 4. Segmentation of the tetra-foil. Details of (a) geodesic, (c) region-

based and (e) Stop and Go snakes. Segmented images for (b) geodesic, (d)

region-based and (f) Stop and Go snakes.
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performance rate in terms of achieving the best compromise

between convergence to the boundary of interest, stabiliz-

ation and computational time.

In the case of the tetra-foil (Fig. 4), the parameters used

for geodesic snakes are {V0Z0.6, DtZ0.2}. The balloon

force value is the maximum admitted by the algorithm in

order to converge to the concave area and not collapsing to a

point. The integration step is the higher admissible for a

stable algorithm, although this jeopardizes the final curve

regularity (see detail in Fig. 4(a)). For the region-based

snakes DtZ100, so that speed of convergence is optimized.

Stop and Go snakes use their standard configuration
Fig. 5. Efficiency assessment for the tetra-foil. Mean distance plot (a) and (b) det
{V02[0.3,1], DtZ1, aZ0.35}, which guarantees the best

compromise between speed of convergence and accuracy.

The final segmentations are drawn in Fig. 4, the first row

showing a close up of the resulting snakes captures the

visual differences among the techniques. The regularity

endowed by curvature makes the standard geodesic

segmentation (Fig. 4(a) and (b)) smoother than the

oscillating contour given by the region-based approach

(Fig. 4(c) and (d)). We could get a smoother (though piece-

wise linear) geodesic model if the integration step was

decreased, although this would decrease the speed of

convergence. In the case of region-based methods, they

always converge to wavy shapes by their own design, since

the final approximation only depends on the shape of the

object of interest and displays all the details without

smoothing. By its design, Stop and Go (Fig. 4(e) and (f))

searches for a compromise between minimum length and

maximum area yielding smoother final results.

Plots in Fig. 5 of the mean and maximum distances

during the evolution reflect snake efficiency and its

evolution smoothness. Smooth motion in the last steps is

crucial to stabilize the snake at the equilibrium curve as

oscillations in its energy trouble any standard stop criterion.

Solid line graphics in Fig. 5 correspond to Stop and Go,

dotted ones to geodesic snakes and dashed ones to region-

based snakes. The ordinate axes are the distances in pixels

and the abscise axes the number of iterations, mean

distances are in the first row and maximums in the second

one. In Fig. 5(b) and (d), we display close ups of the last
ail. Maximum distance (c) and detail of the last steps of the evolution (d).
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iterations of the convergence process. Concerning speed of

convergence, Stop and Go standard configuration compares

to region-based methods for both mean (Fig. 5(a)) and

maximum distances (Fig. 5(c)). Meanwhile, in spite of using

their optimal speed configuration, geodesic snakes are, by

no means, the worst performers. That is a consequence of

the curvature term that requires a small time step and

hinders entering into concave areas. Maximum distances are

similar for all techniques with a difference of !4 pixels (see

detail of Fig. 5(d)), which reflects the good convergence of

all three techniques. The hill in the geodesic snake

maximum distance (Fig. 5(c)) corresponds to its entrance

into the tetra-foil concave segments. This phenomenon is

produced by ridges in the Euclidean distance map and is

common to all methods. However, because Stop and Go and

region-based snakes convergence scheme lacks of the

curvature term, they easily overpass concavities, so that

this convergence phase is hardly detected in their maximum

distance graphics.

In the case of the bracelet (Fig. 6), geodesic snakes used

{V0Z0.6, DtZ0.2} for Fig. 6(c) and {V0Z1.3, DtZ0.2} for

Fig. 6(c). The first parameter setting is the tetra-foil one. The

second one is the minimum value that allows the snake to

surpass the saddle point that impedes the snake to converge

in the concave region. Again region-based snakes have been

implemented using the highest time increment possible,

DtZ100, and Stop and Go its standard configuration

{V02[0.3,1], DtZ1, aZ0.35}. Notice the robustness in

parameter setting of the last two techniques, which converge

(Fig. 6(a) and (b)) with standard values. Geodesic snake

performance significantly differs. On one hand, with the

tetra-foil configuration, geodesic snakes fail to converge to

the right shape (Fig. 6(c)). On the other, with the higher

balloon force parameter setting they collapse to a point

(Fig. 6(d)).
5.3. Stop and Go parameters study

In order to check robustness of final models to parametric

values, we have chosen the tetra-foil image (Fig. 4). The

experiment consists in varying separately each of the

parameters, while keeping the rest within their standard

range of values. Performance is assessed by studying quality

plots (Fig. 7).

Fig. 7(a) shows Stop and Go behavior when the time step

varies. As expected the speed of convergence increases as
Fig. 6. Segmentation of the bracelet. (a) Stop and Go, (b) region-based snakes, (
Dt raises. The time step can be increased without altering

the accuracy performance provided that Dt$a%0.4. The

latter constrain is required at the last steps, when the

curvature shows. Fig. 7(b) depicts the result of altering V0

keeping DtZ1. To avoid the snake collapsing to a point, we

should keep V0 below 1.7, so that the GO term does not

exceed the STOP term. Again, the convergence rate

increases as the value of V0 does. However, in this case,

accuracy is affected as detail in Fig. 7(c) shows. The

accuracy improvement for low V0 is due to the fact that

likelihood maps usually underestimate the object of interest.

Fig. 7(d) and (e) show optimal configurations (for accuracy

and speed of convergence) of the Stop and Go scheme

compared to the standard one. The fastest configuration uses

{V0Z1.3, DtZ1.3 and aZ0.23} and the smoother {V0Z
0.2, DtZ0.5 and aZ0.6}. If V0 is comparable to k$a and Dt

is low, the competition between both terms allows smoother

behaviors. This follows because the number of iterations,

which the competition between area maximization and

minimum length takes place, is larger.

The difference in behaviors consequence of the wide

range of parametric values results in some interesting

applications. In some cases the shape we are looking for is

ambiguous, in the sense that multiple interpretations can be

offered for the same shape, as, for example, the wheel-

shaped image in Fig. 8. Depending on our application, we

would rather have a closed round contour or an model of the

open contour. This kind of control on the evolving snake can

be achieved by varying the parameter V0. Fig. 8(a) shows

the Stop and Go snake leaking through the hole to adapt

explicitly to the shape. Fig. 8(b) illustrates the effect of

reducing V0 if our desire is to close the hole in the shape.
5.4. Application to real scenes segmentation

This section provides visual validation of the Stop and

Go scheme applied to real scene (textured-based) segmenta-

tion and robustness to different likelihood maps

computation.

Fig. 9(a) shows the likelihood map of the zebra pattern

and Fig. 9(b) shows the final segmentation using Stop and

Go active models. Note the fact that the shadow of the zebra

has lower probabilities than the rest. The Stop and Go active

model ignores areas of a low likelihood value that would

trap snakes evolving under other schemes. Notice that

the shadow under the rear legs of the zebra is intense,
c) non-convergent geodesic snake and (d) collapsing of a geodesic snake.



Fig. 7. Stop and Go parameters study. Distances for (a) time increment variation, (b) V0 variation and (d) optimal parameters. Details for (c) V0 plot and (e)

optimal parameters plot.
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and the likelihood value at that area is high. Therefore,

unless we change the likelihood map the rear legs will not be

segmented. Fig. 9(c) shows the likelihood map of a

salamander texture applied over image (Fig. 9(d)). The

background yields a large amount of false positive regions

that does not correspond to the salamander. Because they

have a low likelihood value, they do not affect Stop and Go
behavior. The former control of the snake on low likelihood

valued areas is one of the advantages of the method when

used on real scenarios.

In order to illustrate robustness to likelihood map

estimation, as well as, the effect of varying V0 in real

scenes we have chosen the tiger in Fig. 10. In this case, the

likelihood map (Fig. 10(a)) computation has derived from a



Fig. 8. Segmentation of ambiguous image using Stop and Go snakes. (a)

Concave contour and (b) convex closure.
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pseudo-naive Bayes approach [4]. The high amount of

background noise would difficult the convergence of a

standard snake scheme that would produce a result similar

to the lowest V0 in Fig. 10(b). However, our snakes admit

values for the balloon force as large as to successfully cope

with noise (Fig. 10(c))
6. Conclusion

In this paper, we have introduced a new geodesic snake

model Stop and Go for a more efficient convergence to

shapes. The formulation bases on restricting the regulariz-

ing term to the last stages of the snake deformation by

decoupling the convergence from the regularity. This

decoupling has several advantages over existent geodesic

formulations. On one hand, the numeric scheme is more
Fig. 9. Zebra segmentation: (a) Likelihood map and (b) Stop and Go. Sa

Fig. 10. Tiger image: (a) likelihood map using pseudo-
efficient since it admits arbitrary large time increments,

except for the last regularizing steps. On the other hand,

we build a robust vector field ensuring convergence but, at

the same time, snake stabilization. Convergence is

achieved by defining separately a dynamic attractive

term and an image feature-based repulsive one. We also

introduce likelihood maps to decouple as well as to define

the STOP term of the external potential vector field. By

using likelihood maps as an external force the particular

version of Stop and Go presented in the paper is suited for

feature space-based image segmentation (texture, motion,

color schemes).

We have compared our scheme to current geometric

snakes in terms of computational efficiency and accuracy.

The results clearly show that our method outperforms

geodesic snakes in terms of speed of convergence and

adaptability to concave regions. Besides, the final models of

shapes obtained are smoother than the ones that simple

region-based scheme yields. Results on real images

illustrate the applicability of likelihood maps in different

feature spaces.

We are currently working on likelihood map enhance-

ments for a better location of boundaries in natural scenes as

well as on a general mathematical framework for the model.

The former issues will be presented in a future work, also

including an exhaustive comparison of the performance of

Stop and Go snakes to the most popular texture and color-

based techniques.
lamander segmentation: (c) likelihood map and (d) Stop and Go.

naive Bayes and (b), (c) snakes for different V0s.
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