|
Records |
Links |
|
Author |
Debora Gil; Jaume Garcia; Ruth Aris; Guillaume Houzeaux; Manuel Vazquez |

|
|
Title |
A Riemmanian approach to cardiac fiber architecture modelling |
Type |
Conference Article |
|
Year |
2009 |
Publication |
1st International Conference on Mathematical & Computational Biomedical Engineering |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
59-62 |
|
|
Keywords  |
cardiac fiber architecture; diffusion tensor magnetic resonance imaging; differential (Rie- mannian) geometry. |
|
|
Abstract |
There is general consensus that myocardial fiber architecture should be modelled in order to fully understand the electromechanical properties of the Left Ventricle (LV). Diffusion Tensor magnetic resonance Imaging (DTI) is the reference image modality for rapid measurement of fiber orientations by means of the tensor principal eigenvectors. In this work, we present a mathematical framework for across subject comparison of the local geometry of the LV anatomy including the fiber architecture from the statistical analysis of DTI studies. We use concepts of differential geometry for defining a parametric domain suitable for statistical analysis of a low number of samples. We use Riemannian metrics to define a consistent computation of DTI principal eigenvector modes of variation. Our framework has been applied to build an atlas of the LV fiber architecture from 7 DTI normal canine hearts. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Swansea (UK) |
Editor |
Nithiarasu, R.L.R.V.L. |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CMBE |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ FGA2009 |
Serial |
1520 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Ramos Terrades; Albert Berenguel; Debora Gil |


|
|
Title |
A Flexible Outlier Detector Based on a Topology Given by Graph Communities |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Big Data Research |
Abbreviated Journal |
BDR |
|
|
Volume |
29 |
Issue |
|
Pages |
100332 |
|
|
Keywords  |
Classification algorithms; Detection algorithms; Description of feature space local structure; Graph communities; Machine learning algorithms; Outlier detectors |
|
|
Abstract |
Outlier detection is essential for optimal performance of machine learning methods and statistical predictive models. Their detection is especially determinant in small sample size unbalanced problems, since in such settings outliers become highly influential and significantly bias models. This particular experimental settings are usual in medical applications, like diagnosis of rare pathologies, outcome of experimental personalized treatments or pandemic emergencies. In contrast to population-based methods, neighborhood based local approaches compute an outlier score from the neighbors of each sample, are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. A main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters, like the number of neighbors.
This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world and synthetic data sets show that our approach outperforms, both, local and global strategies in multi and single view settings. |
|
|
Address |
August 28, 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; IAM; 600.140; 600.121; 600.139; 600.145; 600.159 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RBG2022a |
Serial |
3718 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; Petia Radeva |

|
|
Title |
On the usefulness of supervised learning for vessel border detection in IntraVascular Imaging |
Type |
Conference Article |
|
Year |
2005 |
Publication |
Proceeding of the 2005 conference on Artificial Intelligence Research and Development |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
67-74 |
|
|
Keywords  |
classification; vessel border modelling; IVUS |
|
|
Abstract |
IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis of cardiac diseases since sequences completely show the morphology of coronary vessels. Vessel borders detection, especially the external adventitia layer, plays a central role in morphological measures and, thus, their segmentation feeds development of medical imaging techniques. Deterministic approaches fail to yield optimal results due to the large amount of IVUS artifacts and vessel borders descriptors. We propose using classification techniques to learn the set of descriptors and parameters that best detect vessel borders. Statistical hypothesis test on the error between automated detections and manually traced borders by 4 experts show that our detections keep within inter-observer variability. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IOS Press |
Place of Publication |
Amsterdam, The Netherlands |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGR2005c |
Serial |
1549 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Elias Yauri; Aura Hernandez-Sabate; Pau Folch; Debora Gil |

|
|
Title |
Mental Workload Detection Based on EEG Analysis |
Type |
Conference Article |
|
Year |
2021 |
Publication |
Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. |
Abbreviated Journal |
|
|
|
Volume |
339 |
Issue |
|
Pages |
268-277 |
|
|
Keywords  |
Cognitive states; Mental workload; EEG analysis; Neural Networks. |
|
|
Abstract |
The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation. |
|
|
Address |
Virtual; October 20-22 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CCIA |
|
|
Notes |
IAM; 600.139; 600.118; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3723 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Jose Elias Yauri; Pau Folch; Miquel Angel Piera; Debora Gil |

|
|
Title |
Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Applied Sciences |
Abbreviated Journal |
APPLSCI |
|
|
Volume |
12 |
Issue |
5 |
Pages |
2298 |
|
|
Keywords  |
Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion |
|
|
Abstract |
The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment. |
|
|
Address |
February 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; ADAS; 600.139; 600.145; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HYF2022 |
Serial |
3720 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; F. Javier Sanchez; Gloria Fernandez Esparrach; Jorge Bernal |


|
|
Title |
3D Stable Spatio-temporal Polyp Localization in Colonoscopy Videos |
Type |
Book Chapter |
|
Year |
2015 |
Publication |
Computer-Assisted and Robotic Endoscopy. Revised selected papers of Second International Workshop, CARE 2015, Held in Conjunction with MICCAI 2015 |
Abbreviated Journal |
|
|
|
Volume |
9515 |
Issue |
|
Pages |
140-152 |
|
|
Keywords  |
Colonoscopy, Polyp Detection, Polyp Localization, Region Extraction, Watersheds |
|
|
Abstract |
Computational intelligent systems could reduce polyp miss rate in colonoscopy for colon cancer diagnosis and, thus, increase the efficiency of the procedure. One of the main problems of existing polyp localization methods is a lack of spatio-temporal stability in their response. We propose to explore the response of a given polyp localization across temporal windows in order to select
those image regions presenting the highest stable spatio-temporal response.
Spatio-temporal stability is achieved by extracting 3D watershed regions on the
temporal window. Stability in localization response is statistically determined by analysis of the variance of the output of the localization method inside each 3D region. We have explored the benefits of considering spatio-temporal stability in two different tasks: polyp localization and polyp detection. Experimental results indicate an average improvement of 21:5% in polyp localization and 43:78% in polyp detection. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CARE |
|
|
Notes |
IAM; MV; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GSF2015 |
Serial |
2733 |
|
Permanent link to this record |
|
|
|
|
Author |
Mariano Vazquez; Ruth Aris; Guillaume Hozeaux; R.Aubry; P.Villar;Jaume Garcia ; Debora Gil; Francesc Carreras |


|
|
Title |
A massively parallel computational electrophysiology model of the heart |
Type |
Journal Article |
|
Year |
2011 |
Publication |
International Journal for Numerical Methods in Biomedical Engineering |
Abbreviated Journal |
IJNMBE |
|
|
Volume |
27 |
Issue |
|
Pages |
1911-1929 |
|
|
Keywords  |
computational electrophysiology; parallelization; finite element methods |
|
|
Abstract |
This paper presents a patient-sensitive simulation strategy capable of using the most efficient way the high-performance computational resources. The proposed strategy directly involves three different players: Computational Mechanics Scientists (CMS), Image Processing Scientists and Cardiologists, each one mastering its own expertise area within the project. This paper describes the general integrative scheme but focusing on the CMS side presents a massively parallel implementation of computational electrophysiology applied to cardiac tissue simulation. The paper covers different angles of the computational problem: equations, numerical issues, the algorithm and parallel implementation. The proposed methodology is illustrated with numerical simulations testing all the different possibilities, ranging from small domains up to very large ones. A key issue is the almost ideal scalability not only for large and complex problems but also for medium-size meshes. The explicit formulation is particularly well suited for solving this highly transient problems, with very short time-scale. |
|
|
Address |
Swansea (UK) |
|
|
Corporate Author |
John Wiley & Sons, Ltd. |
Thesis |
|
|
|
Publisher |
John Wiley & Sons, Ltd. |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VAH2011 |
Serial |
1198 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva |


|
|
Title |
Extending anisotropic operators to recover smooth shapes |
Type |
Journal Article |
|
Year |
2005 |
Publication |
Computer Vision and Image Understanding |
Abbreviated Journal |
|
|
|
Volume |
99 |
Issue |
1 |
Pages |
110-125 |
|
|
Keywords  |
Contour completion; Functional extension; Differential operators; Riemmanian manifolds; Snake segmentation |
|
|
Abstract |
Anisotropic differential operators are widely used in image enhancement processes. Recently, their property of smoothly extending functions to the whole image domain has begun to be exploited. Strong ellipticity of differential operators is a requirement that ensures existence of a unique solution. This condition is too restrictive for operators designed to extend image level sets: their own functionality implies that they should restrict to some vector field. The diffusion tensor that defines the diffusion operator links anisotropic processes with Riemmanian manifolds. In this context, degeneracy implies restricting diffusion to the varieties generated by the vector fields of positive eigenvalues, provided that an integrability condition is satisfied. We will use that any smooth vector field fulfills this integrability requirement to design line connection algorithms for contour completion. As application we present a segmenting strategy that assures convergent snakes whatever the geometry of the object to be modelled is. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1077-3142 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GIR2005 |
Serial |
1530 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Oriol Rodriguez-Leor; Petia Radeva; J. Mauri |


|
|
Title |
Myocardial Perfusion Characterization From Contrast Angiography Spectral Distribution |
Type |
Journal Article |
|
Year |
2008 |
Publication |
IEEE Transactions on Medical Imaging |
Abbreviated Journal |
|
|
|
Volume |
27 |
Issue |
5 |
Pages |
641-649 |
|
|
Keywords  |
Contrast angiography; myocardial perfusion; spectral analysis. |
|
|
Abstract |
Despite recovering a normal coronary flow after acute myocardial infarction, percutaneous coronary intervention does not guarantee a proper perfusion (irrigation) of the infarcted area. This damage in microcirculation integrity may detrimentally affect the patient survival. Visual assessment of the myocardium opacification in contrast angiography serves to define a subjective score of the microcirculation integrity myocardial blush analysis (MBA). Although MBA correlates with patient prognosis its visual assessment is a very difficult task that requires of a highly expertise training in order to achieve a good intraobserver and interobserver agreement. In this paper, we provide objective descriptors of the myocardium staining pattern by analyzing the spectrum of the image local statistics. The descriptors proposed discriminate among the different phenomena observed in the angiographic sequence and allow defining an objective score of the myocardial perfusion. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRR2008 |
Serial |
1541 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Vera; Debora Gil; Miguel Angel Gonzalez Ballester |


|
|
Title |
Anatomical parameterization for volumetric meshing of the liver |
Type |
Conference Article |
|
Year |
2014 |
Publication |
SPIE – Medical Imaging |
Abbreviated Journal |
|
|
|
Volume |
9036 |
Issue |
|
Pages |
|
|
|
Keywords  |
Coordinate System; Anatomy Modeling; Parameterization |
|
|
Abstract |
A coordinate system describing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specific anatomical landmarks, the coordinate system allows integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric coordinate systems over the surface of anatomical shapes, given their flexibility to set values
at specific locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at sites
of limited geometric diversity. In this paper we present a method for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the
volume medial surface. We have applied the methodology to define a common reference system for the liver shape and functional anatomy. This reference system sets a solid base for creating anatomical models of the patient’s liver, and allows comparing livers from several patients in a common framework of reference. |
|
|
Address |
Amsterdam; September 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SPIE-MI |
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ VGG2014 |
Serial |
2456 |
|
Permanent link to this record |