|
Records |
Links |
|
Author |
Jaume Garcia; Debora Gil; Francesc Carreras; Sandra Pujades; R.Leta |

|
|
Title |
Modelització 4-Dimensional de la Funció Siatólica del Ventricle Esquerre |
Type |
Conference Article |
|
Year |
2007 |
Publication |
XIX Congrés de la Societat Catalana de Cardiologia de Barcelona |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
133-134 |
|
|
Keywords |
|
|
|
Abstract |
L’evolució tecnològica en el tractament de les imatges mèdiques permet reconstruir, amb el software apropiat, imatges tridimensionals de les estructures cardiovasculars i dotar-les de moviment. Les imatges 4D resultants faciliten l’estudi de la fisiopatologia de la insuficiència cardíaca en base als transtorns de l’activació electromecànica ventricular, el que pot ser d’interès en el procés de selecció de pacients candidats a teràpies de resincronització. Presentem els resultats preliminars de la reconstrucció 4D del ventricle esquerre (VE) a partir de les seqüències de tagging miocàrdic del VE. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Barcelona (Spain) |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number  |
IAM @ iam @ GGC2007 |
Serial |
1505 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Garcia; Debora Gil; Sandra Pujades; Francesc Carreras |


|
|
Title |
A Variational Framework for Assessment of the Left Ventricle Motion |
Type |
Journal Article |
|
Year |
2008 |
Publication |
International Journal Mathematical Modelling of Natural Phenomena |
Abbreviated Journal |
|
|
|
Volume |
3 |
Issue |
6 |
Pages |
76-100 |
|
|
Keywords |
Key words: Left Ventricle Dynamics, Ventricular Torsion, Tagged Magnetic Resonance, Motion Tracking, Variational Framework, Gabor Transform. |
|
|
Abstract |
Impairment of left ventricular contractility due to cardiovascular diseases is reflected in left ventricle (LV) motion patterns. An abnormal change of torsion or long axis shortening LV values can help with the diagnosis and follow-up of LV dysfunction. Tagged Magnetic Resonance (TMR) is a widely spread medical imaging modality that allows estimation of the myocardial tissue local deformation. In this work, we introduce a novel variational framework for extracting the left ventricle dynamics from TMR sequences. A bi-dimensional representation space of TMR images given by Gabor filter banks is defined. Tracking of the phases of the Gabor response is combined using a variational framework which regularizes the deformation field just at areas where the Gabor amplitude drops, while restoring the underlying motion otherwise. The clinical applicability of the proposed method is illustrated by extracting normality models of the ventricular torsion from 19 healthy subjects. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number  |
IAM @ iam @ GGC2008a |
Serial |
1058 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Garcia; Debora Gil; Francesc Carreras; Sandra Pujades; R.Leta; Xavier Alomar; Guillem Pons-LLados |


|
|
Title |
Patrons de Normalitat Regional per la Valoració de la Funció del Ventricle Esquerre |
Type |
Conference Article |
|
Year |
2008 |
Publication |
XX Congrés de la Societat Catalana de Cardiologia |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
60 |
|
|
Keywords |
|
|
|
Abstract |
Les malalties cardiovasculars afecten les propietats contràctils de la banda ventricular i provoquen una variació de la funció del Ventricle Esquerre (VE) . Només els indicadors locals (strains, la deformació del teixit) són capaços de detectar anomalies en territoris específics del VE . Patrons de normalitat regionals d’aquests paràmetres serien d’utilitat a l’hora de valorar-ne la funció .
Presentem un Domini Paramètric Normalitzat (DPN) que permet comparar dades de diferents pacients i definir Patrons de Normalitat Regional (PNR) |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Barcelona |
Editor |
|
|
|
Language |
catalan |
Summary Language |
catalan |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number  |
IAM @ iam @ GGC2008b |
Serial |
1503 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Garcia; Debora Gil; Francesc Carreras ; Sandra Pujades; R.Leta; Xavier Alomar; Guillem Pons-LLados |

|
|
Title |
Un Model 3D del Ventricle Esquerre Integrant Anatomia i Funcionalitat |
Type |
Conference Article |
|
Year |
2008 |
Publication |
XX Congrés de la Societat Catalana de Cardiologia, Actes del Congres |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
122 |
|
|
Keywords |
|
|
|
Abstract |
Els canvis en la dinàmica del Ventricle Esquerre (VE) reflecteixen la majoria de malalties cardiovasculars . Els avenços en imatge mèdica han impulsat la recerca en models i simulacions de la dinàmica 3D del VE . La majoria dels models existents sols consideren l’anatomia externa del VE i no permeten una avaluació de l’acoblament electromecànic . Donat que la mecànica d’un muscle depèn de la orientació de les seves fibres, un model realista hauria d’incloure la disposició espacial de la banda ventricular helicoidal (BVH) .
Proposem desenvolupar un model del VE adaptat a cada pacient que integri, per primer cop, l’anatomia de la banda ventricular, l’anatomia externa del VE i la seva funcionalitat, per a una millor determinació del patró d’activació electromecànica |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Barcelona |
Editor |
|
|
|
Language |
catalan |
Summary Language |
catalan |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number  |
IAM @ iam @ GGC2008c |
Serial |
1504 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Jaume Garcia; Aura Hernandez-Sabate; Enric Marti |


|
|
Title |
Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy |
Type |
Conference Article |
|
Year |
2010 |
Publication |
8th Medical Imaging |
Abbreviated Journal |
|
|
|
Volume |
7623 |
Issue |
762304 |
Pages |
304 |
|
|
Keywords |
|
|
|
Abstract |
Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
SPIE |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SPIE |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number  |
IAM @ iam @ GGH2010a |
Serial |
1522 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Garcia; Debora Gil; Luis Badiella; Aura Hernandez-Sabate; Francesc Carreras; Sandra Pujades; Enric Marti |


|
|
Title |
A Normalized Framework for the Design of Feature Spaces Assessing the Left Ventricular Function |
Type |
Journal Article |
|
Year |
2010 |
Publication |
IEEE Transactions on Medical Imaging |
Abbreviated Journal |
TMI |
|
|
Volume |
29 |
Issue |
3 |
Pages |
733-745 |
|
|
Keywords |
|
|
|
Abstract |
A through description of the left ventricle functionality requires combining complementary regional scores. A main limitation is the lack of multiparametric normality models oriented to the assessment of regional wall motion abnormalities (RWMA). This paper covers two main topics involved in RWMA assessment. We propose a general framework allowing the fusion and comparison across subjects of different regional scores. Our framework is used to explore which combination of regional scores (including 2-D motion and strains) is better suited for RWMA detection. Our statistical analysis indicates that for a proper (within interobserver variability) identification of RWMA, models should consider motion and extreme strains. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0278-0062 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number  |
IAM @ iam @ GGH2010b |
Serial |
1507 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Garcia; Debora Gil; Aura Hernandez-Sabate |


|
|
Title |
Endowing Canonical Geometries to Cardiac Structures |
Type |
Book Chapter |
|
Year |
2010 |
Publication |
Statistical Atlases And Computational Models Of The Heart |
Abbreviated Journal |
|
|
|
Volume |
6364 |
Issue |
|
Pages |
124-133 |
|
|
Keywords |
|
|
|
Abstract |
International conference on Cardiac electrophysiological simulation challenge
In this paper, we show that canonical (shape-based) geometries can be endowed to cardiac structures using tubular coordinates defined over their medial axis. We give an analytic formulation of these geometries by means of B-Splines. Since B-Splines present vector space structure PCA can be applied to their control points and statistical models relating boundaries and the interior of the anatomical structures can be derived. We demonstrate the applicability in two cardiac structures, the 3D Left Ventricular volume, and the 2D Left-Right ventricle set in 2D Short Axis view. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin / Heidelberg |
Place of Publication |
|
Editor |
Camara, O.; Pop, M.; Rhode, K.; Sermesant, M.; Smith, N.; Young, A. |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
Lecture Notes in Computer Science |
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number  |
IAM @ iam @ GGH2010b |
Serial |
1515 |
|
Permanent link to this record |
|
|
|
|
Author |
Sandra Pujades;Francesc Carreras;Manuel Ballester; Jaume Garcia; Debora Gil |

|
|
Title |
A Normalized Parametric Domain for the Analysis of the Left Ventricular Function |
Type |
Conference Article |
|
Year |
2008 |
Publication |
Proceedings of the Third International Conference on Computer Vision Theory and Applications (VISAPP’08) |
Abbreviated Journal |
|
|
|
Volume |
1 |
Issue |
|
Pages |
267-274 |
|
|
Keywords |
Helical Ventricular Myocardial Band; Myocardial Fiber; Tagged Magnetic Resonance; HARP; Optical Flow Variational Framework; Gabor Filters; B-Splines. |
|
|
Abstract |
Impairment of left ventricular (LV) contractility due to cardiovascular diseases is reflected in LV motion patterns. The mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fiber. The helical ventricular myocardial band (HVMB) concept describes the myocardial muscle as a unique muscular band that twists in space in a non homogeneous fashion. The 3D anisotropy of the ventricular band fibers suggests a regional analysis of the heart motion. Computation of normality models of such motion can help in the detection and localization of any cardiac disorder. In this paper we introduce, for the first time, a normalized parametric domain that allows comparison of the left ventricle motion across patients. We address, both, extraction of the LV motion from Tagged Magnetic Resonance images, as well as, defining a mapping of the LV to a common normalized domain. Extraction of normality motion patterns from 17 healthy volunteers shows the clinical potential of our LV parametrization. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number  |
IAM @ iam @ GGP2008 |
Serial |
1627 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Jordi Gonzalez; Gemma Sanchez (eds) |

|
|
Title |
Computer Vision: Advances in Research and Development |
Type |
Book Whole |
|
Year |
2007 |
Publication |
Proceedings of the 2nd CVC International Workshop |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
UAB |
Place of Publication |
Bellaterra (Spain) |
Editor |
Debora Gil; Jordi Gonzalez; Gemma Sanchez |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
2 |
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-935251-4-9 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; ISE; DAG |
Approved |
no |
|
|
Call Number  |
IAM @ iam @ GGS2007 |
Serial |
1493 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Jaume Garcia; Mariano Vazquez; Ruth Aris; Guilleaume Houzeaux |


|
|
Title |
Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function |
Type |
Conference Article |
|
Year |
2008 |
Publication |
8th World Congress on Computational Mechanichs (WCCM8) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Left Ventricle, Electromechanical Models, Image Processing, Magnetic Resonance. |
|
|
Abstract |
Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models [1] consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality [2]. In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp [3].
We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment.
The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted.
The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have
Figure 1: Scheme for the Left Ventricle Patient-Sensitive Model.
computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model. |
|
|
Address |
Venice; Italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
9788496736559 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number  |
IAM @ iam @ GGV2008b |
Serial |
993 |
|
Permanent link to this record |