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Abstract. Impairment of left ventricular contractility due to cardiovascular diseases is
reflected in left ventricle (LV) motion patterns. An abnormal change of torsion or long
axis shortening LV values can help with the diagnosis and follow-up of LV dysfunction.
Tagged Magnetic Resonance (TMR) is a widely spread medical imaging modality that allows
estimation of the myocardial tissue local deformation. In this work, we introduce a novel
variational framework for extracting the left ventricle dynamics from TMR sequences. A
bi-dimensional representation space of TMR images given by Gabor filter banks is defined.
Tracking of the phases of the Gabor response is combined using a variational framework
which regularizes the deformation field just at areas where the Gabor amplitude drops,
while restoring the underlying motion otherwise. The clinical applicability of the proposed
method is illustrated by extracting normality models of the ventricular torsion from 19
healthy subjects.

Key words: left ventricle dynamics, ventricular torsion, tagged magnetic resonance, motion
tracking, variational framework, Gabor transform.

AMS subject classification: 35A15, 43A32

1. Introduction

Impairment of left ventricular (LV) contractility due to cardiovascular diseases is reflected in
LV motion patterns, resulting from the peculiar helical disposition of LV myocardial fibers.
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The detection of an abnormal change of torsion and long axis shortening LV values can help
with the diagnosis and follow-up of LV dysfunction, as it occurs in pathologic conditions such
as ischemic heart disease or cardiomyopathies. To this aim, a complete analysis of the global
[21, 33] and also regional [6, 15, 16] function of the heart should be performed. Currently,
there are many imaging techniques allowing the visualization of cardiac function. Among
them, Tagged MRI [3, 35] is the reference imaging modality for regional assessment of the
heart function. This technique produces a grid like pattern of saturated magnetization over
the myocardium (see images in fig.1 b)). The grid deformation along the cardiac cycle allows
visualization of intramural deformation and, thus, assessment of in-heart local functionality.

Since the appearance of Tagged MRI, in the late 80’s, many image processing techniques
have been developed in order to extract data motion. We might differentiate between those
working in the image spatial domain and those working in its frequency (Fourier) domain.

In the first group [34, 20, 17] the dark stripes are considered as target features to be
tracked along the sequence. A main problem is that contrast between tissue and tags di-
minishes in time (fading effect [25]), which lows their performance at advance stages of the
cardiac cycle. Furthermore these techniques lead to sparse displacement fields that have to
be further interpolated to the whole myocardium. These drawbacks can be overcome by
means of a variational approach modelling brightness variation. The most popular trends
are optical flow techniques [10, 11, 26] for tracking motion between consecutive frames and
non-rigid registration [8, 22, 27] to the initial frame. Although they provide motion fields
defined on the whole image, compensating the fading effect [17] leads to complicated numeric
schemes prone to reduce computational efficiency.

In the second group we have the spectral methods which use frequency content of the
tagged sequences to estimate motion. The most representative method in this group is
the HARmonic Phase (HARP) [24, 25], which tracks the phase of the Fourier coefficients
associated to the tagged pattern. Although such methods allow tracking motion at any time
of the cardiac cycle they have two main limitations. On one hand, since they use a global
Fourier transform they can not properly deal with inhomogeneous deformations usual at
advanced stages of the systolic cycle (see basal and apical sequences in the first and third
rows of fig. 1 b)). On the other hand, there is not any continuity constrain on the vector
field which might lead to discontinuous fields at end-systole. In [2] properly modelling tissue
local deformation is addressed by using a bank of Gabor filters, but still no continuity on
the vector field is forced.

In this paper, we provide a novel variational approach to computation of the left ventricle
dynamics observed in tagged sequences. Firstly, we introduce a bi-dimensional representa-
tion space for tagged images given by a pair of Gabor filter banks. The phase of the Gabor
responses is a property of tissue that remains constant along the cardiac cycle [24] and is
able to detect local deformations [4]. Meanwhile, the amplitude of the Gabor response in-
dicates the reliability of the local pattern detected by the Gabor filter. Secondly, we define
a functional in a Sobolev space [12] for tracking each of the representation features. We
combine the optical flow [19] of the two Gabor phases into a variational framework which
regularizes the deformation field just at areas where the Gabor amplitude drops [14]. The
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Figure 1: TMR sequences acquisition. The main LV views are shown in a), short axis (SA)
above and long axis (LA) below. The SA view comprises 3 levels called Base, Mid and Apex.
Sequences from each of the cuts are shown in b).

resulting deformation map is a dense and continuous vector field which we call Harmonic
Phase Flow (HPF). The method accuracy has been tested using, both, synthetic dynamic
phantoms and real sequences manually marked by an expert. Its clinical potential is illus-
trated by computing normality profiles for the ventricular rotation and torsion [23], which
are strongly related to the ventricular ejection and filling [18].

The paper contents are distributed as follows. In Section 2. we detail the image processing
background for motion tracking in tagged MR images. Section 3. explains our variational
approach to computation of the LV motion observed in tagged MR sequences. Validation of
the variational model in synthetic phantoms is detailed in Section 4., while the validation in
real sequences is given in Section 5.. Its clinical applicability, including healthy normality
models for the ventricular torsion, is also given in Section 5.. Finally, discussion and further
lines of research are exposed in Section 6..

2. Image Processing Background

2.1. HARP Representation

An image sequence might be regarded as a uniparametric family, namely I(z,y;t), of 2D
functions (images or frames) indexed by the temporal variable ¢. The SPAMM tagging
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protocol [3] ”prints” over the myocardium two sets of linearly independent tags generated
by two main frequencies, (wy, ws), that produce K spectral harmonic peaks in the frequency
domain. The number of harmonic peaks depends on the number of hard radio frequency
pulses applied to produce the pattern [25]. It follows that any tagged frame I(x,y;t) might
be expressed [25] as the composition of complex images called harmonic images:

K

K
I(,y;t) =Y Io(p(w, y; ) e (t)e P = N " 1y (x, y; 1) (2.1)
k=1 k=1
for wy = ngwy + myws; p(z,y;t) the reference map that relates a spatial point (z,y) at a
given time ¢ to its associated material point at time t = 0; (-,-) the scalar product; Iy the
underlying ordinary MR image (without tags) and ¢ a function modelling tags fading across
time.

The phase of each harmonic image ®y(x,y;t) = (Wi, p(x, y;t)), is a stable property of the
tissue, as it linearly depends on the reference map [25]. Since, in practice, the phase cannot
be properly retrieved, the principal wrapped value [25, 28] defined in the range [—m, 7) is
used. This is called HARP image and it provides motion information in a direction close
to wg. In order to extract 2D motion, two HARP images associated to linearly independent
harmonic frequencies are required.

In the case of the HARP method proposed in [24], they use a Newton-Raphson approach
for seeking the points that keep constant phase values between consecutive HARP images.
Since the correspondence is computed separately for each pixel, the resulting vector field is
often irregular.

2.2. Tracking Issues

In image processing terms, tracking [19, 5] addresses finding the trajectory of a given object
in an image sequence. In a mathematical framework, object tracking turns into determining,
for each time ¢, the map that best matches two consecutive frames. Since we have a different
transformation for each couple of images (i.e. times), we have a family of maps indexed by
time. We will note such maps by T'(x,y, t).

One of the most popular approaches for motion tracking is the Optical Flow [19]. Such
technique relies on the assumption that the intensity of image structures keeps approximately
constant, so that the transformation map must satisfy:

I(T(x,y,t);t) = const (2.2)

By differentiating the first term with respect to time we obtain the optical flow constraint
equation:

(VI,T,)+1,=0 (2.3)

where VI = (I, I,) stands for the image gradient and [, 7} for the partial time derivative.
The time derivative of the map T is a vector field V (z,y;t) = (u(x,y;t),v(z,y;t)) that best
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matches two consecutive frames. Using this notation we get the usual formulation for the
constrain equation:

(VIL,V)+1,=0 (2.4)

We note that, from a mathematical point of view and under the brightness constancy as-
sumption, object tracking converts into finding the isosurfaces of the uni-parametric family
of images, I(z,y;t), defining the sequence. Since only one equation (2.4) is available, in or-
der to uniquely determining the two unknowns (u and v) smoothness constraints are usually
added.

In the case of HARP images, we have, for each time ¢, a couple of angular values, a; (z, y; )
and aq(z, y;t), that must be tracked [13]. Therefore the deformation field could be computed
by solving independently for each point the optical flow system:

(Vag, VY +ap =0 for k=1,2 (2.5)

We note that this would yield irregular vector fields since there is no constraint on
the spatial continuity of the vector. In the following section, we use these equations in a
variational framework as matching term, in order to obtain continuous deformation maps.

3. Harmonic Phase Flow

3.1. Harmonic Representation

In order to obtain the HARP images associated to a given tagged frame, its main harmonic
images (1, Iy € C) need to be determined. If tags were a regular grid, band pass Gabor
filters centered at the main spectral peaks, (w;, wy), would retrieve the harmonic images.
Grid regularity holds at initial time (fig. 1 b), first column) but, as the myocardial cycle
evolves, tags loose their initial ideal shape (Fig. 1 b), columns 2 to 4), and the previous
filter will give lower response in most of the myocardial regions. The highest response will
be given, at each point, by the Gabor filter with the most similar frequency and scale of the
underlying tag pattern. A Gabor filter is the product of a complex sinusoid, that determines
the frequency, by a gaussian envelope that determines the scale.

. wrx wyy _(I/>2+§/\yl>2
D(z,y)=C 2w ) e o (3.6)
Frequency Scale

Each part of the Gabor filter formula has its own parameters that can be independently
tuned:

Frequency Parameters:

o w = (wy,wy) is a 2D vector that determines the frequency and the orientation of the
pattern with its norm and angle respectively.
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Figure 2: American Heart Association nomenclature for myocardial segments in SA views
seen from apex to base. a) Basal and mid sectors: anterior (a), anterolateral (al), inferolateral
(il), inferior (i) inferoseptal (is) and anteroseptal (as). b) Apical sectors: anterior (a), lateral
(1), inferior (i) and septal (s).

e H and W determines the height and the width of the window in which we define the
filter. These parameters are fixed and have the same values as the image to be filtered.

Scale Parameters:

e 1/ = xcosp+ ysing and 3y = —xsin¢ + ycos ¢ define the rotation of the Gaussian
envelope.

e 0, determines the size of the gaussian envelope along its 2’ direction.

e )\ defines the degree of anisotropy of the gaussian envelope.

We design two Gabor filter banks, one for each tagging direction given by wy’s, tuned to
isolate the I;.’s. We note that, since tissue local deformation is not large, the frequencies of
the Gabor filters should be close to the main frequencies. If we write each principal frequency
in polar coordinates, wy, = rpe~ % then nearby frequencies are given by:

w = (rg + Ar)e 20 (3.7)

We define the new parameters 7, = r, + Ar and 6, = 0+ 6. Regarding to scale aspects, we
consider g, to be Q times the period of the frequency. With these redefinitions we obtain
a Gabor filter bank governed by 5 parameters. We denote a parameter configuration by
p= (740 | #,Q,)) and the 5 dimensional domain where p takes values by P.

We recall that image sequences come from 4 different standard acquisition planes, which
can be divided in short axis (SA) and long axis (LA) views (fig. 1 a)). In addition, the SA
view comprises 3 levels along the heart long axis namely: Base, Mid and Apex (fig. 1 a),
above). The heart muscle anatomy [30] strongly influences the motion that the myocardium
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undergoes in those different views/levels (fig. 1). Following the AHA nomenclature for
myocardial segments [7] (see fig. 2) the following behavior for the different sequences (seen
from apex to base) along the systolic cycle can be observed:

e Base: All segments less anterior and anterolateral (fig. 2 a)), that undergo radial
shortening, rotate counterclockwise at the beginning of the systolic cycle. They rapidly
(at 15% of systole approx.) turn to clockwise rotation together to the rest of the
segments until the end of the systolic cycle (see fig. 1 b), first row).

e Mid: Is the most simple as it mainly presents isotropic radial shortening with few
rotation depending on if the acquisition plane approaches to the base or to the apex
(see fig. 1 b), second row).

e Apex: Presents a counterclockwise rotation together to a contractile component al-
most homogeneous for all the LV less the inferior sector (fig. 2 b)) in which shortening
is stronger (see fig. 1 b), third row).

e Long Axis: The most basal levels present the highest longitudinal shortening which
gradually diminish as they approach to apex, which remains almost still during the
whole cardiac cycle. By the other hand LV thicken as they approach to apex (see fig.
1 b), fourth row).

These observations have motivated to design a tailored bank of filters for each of the 4
kinds of sequences. Each filter bank is characterized by its parameter domain that we denote
by PEA, PE, PM and P, with k = {1,2}. Parameter values for each domain are specified
in table 1. Value ranges are given using the notation for vector definition of MATLAB:
(a:h:b).

Let Iy, k = {1,2} be the couple of harmonic images associated a tagged image belonging
to a certain acquisition plane [ € {B, M, A, LA}. We obtain them by assigning to each pixel,
the maximum response of the bank of filters:

I(z,y;t) = I(z,y;t) x ' p= maxpep“](x, y;t) =T (3.8)

This convolution (filtering) has been implemented in the Fourier space were this operation
becomes a simple product as stated by the convolution theorem.

The respective phases of I, ®;, define a bivariate harmonic representation, of the tagged
MR image I. On the other hand, their amplitudes |I;| indicate the reliability of the local
pattern detected by the Gabor filters, in the sense that low values correspond to noise.
Amplitudes serve to integrate the two phases in a variational framework [14] which regularizes
the deformation field just at areas where the amplitude drops while restoring the underlying
motion otherwise.
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Table 1: Parameter ranges of the Gabor filter banks for each type of sequence

Pp (5 2ry) (9%” e 9’“3%) (1§ 15 ° 1s) (2,3) (1,2)
P (%% 5 (%" 55 0 BT (F: %% (3) (1)
P Fm:%3) O (g h) (3) (1)
Pt ) Owtime ) (Eemiw) G W

3.2. Harmonic Phase Flow Approach to LV Dynamics

The LV motion between two consecutive sequence times, ¢ and ¢ + 1, is given by the 2D
vector field (or deformation map), V(X) = (u(X),v(X)) for X = (z,y), best matching
their bivariate harmonic representations. In variational terms, this reduces to finding the
minimum of the following energy functional:

2
e = Z/||<1>z+l<x>—<1>z<x+v>||2 4 /||W||2
k=1 ., N— —

Mat‘crhing Regularity

for ®¢ and (ID’,;“ the harmonic phases of tag images at time ¢ and ¢t + 1 and the regularity
term, ||[VV||* = ||[Vul|* + ||[Vv]||?, the norm of the gradient of the vector field. In our case,
since, in fact, we handle a tracking problem, we substitute the matching term by its optical
flow [19] first order approximation. By forcing the optical flow condition, the two summands
in the matching term convert into:

g1 = <I)1xu + q)lyv + (I)lt = vq)l -V + (I)lt
€9 = Dot + Doy + Do = V Py - V 4 Py

for @y, Ppy, Pre, the partial derivatives of the k —th phase at time ¢. If we note by szeg the
regularity term, then the generic tracking energy becomes:

€= /(sf +e2) + /éfeg (3.9)

Taking into account that the phase of a complex number is given by the imaginary part of
its logarithm, the spatio-temporal derivatives of the phase can be computed without any
wrapping effect as:

[Re(1) 258 — (1) 22402
| 1[?

where ¢ = {xz,y,t} and Re, I'm stand for the real and imaginary parts of a complex number.
Provided that the matching terms ¢ are fully given in terms of phase derivatives, we can use

Oy =
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Figure 3: Main Steps in the Computation of the Left Ventricle Dynamics. Above on the
left, two consecutive frames of a basal sequence. On the right their respective bi-dimensional
harmonic representations that, together with the weighting functions (in the center), conform
the variational framework for robust tissue tracking. Below on the right we show the result
of the HPF, where vectors have been discretized and resized for visualization purposes. On

the left detail of the real dense deformation map.

phases ®; in the tracking process even without knowing them explicitly. Recall that only
their wrapped version a; was available.

At areas with low signal to noise ratio (e.g. in the presence of thermal noise), the phases
®,. are not reliable and, thus, should not be taken into account for motion tracking. By
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adding a weighting function to the energy (3.9) the latter requirement is achieved:
£ = /(1 — (1 + an)/2)%e2,, + [ofe] + ajed]dady (3.10)

where a7 and ay depend on the amplitudes of I, and are normalized in order to take values
in the range [0, 1]:

||
Qg (.flf, y) -
[Hilloo
for || - || standing for the maximum norm of a bounded function.

Since in the variational framework given by (3.10) the proposed weights depend (at each
point) on the amplitude of the filtered images, the smoothness constraint is only applied at
areas were the filtering response drops. Low amplitude responses correspond to myocardial
areas without noticeable tagging pattern or simply background noise. In both cases, the
phase does not provide any information about motion and should not be taken into account.
At these areas, the vector field is linearly interpolated using the nearest reliable values.
Meanwhile at clearly tagged zones, the smoothing term vanishes and only phase image
motion accounts for the computation of HPF. It follows that cardiac motion discontinuities
can be retrieved as far as they are detected by the tagging pattern.

We note that the proposed regularity term extends, in some sense, the formulation re-
ported in [9]. Regularity constrains of the type suggested in [9] preserve sharp changes
provided that we have an image map measuring the probability of having a meaningful dis-
continuity. Such map is usually defined in terms of the gradient magnitude of the target
function/vector field. In the case of deformation maps in biomedical imaging, a large gradi-
ent might possibly be product of a noisy match and, thus, alternate measures are required.
Modifying the metric for the L? regularity term is the easiest way of obtaining a weighted
Laplacian (like in [9]) ensuring special treatment of singularities in the case that they are
not defined in terms of the unknown input. We conclude that the proposed scheme general-
izes the ideas reported in [9] without increasing the complexity of the numeric scheme (no
hyper-parameter extra minimization is required) and providing a good robustness to noise.

Applying the Euler-Lagrange equations to (3.10), we get:

[Ajju+ Ao + Az] = (1 — @)?Au — 2(1 — a)(au, + Qyy)
(3.11)
[Ag1u + Agov + Asz] = (1 — @)?Av — 2(1 — a) (v, + ayvy)

(a1tas

where a = ~=5 ), A is the Laplacian operator and the coefficients A;; are equal to:

Ay = (ai®], + a3®3,)

A12 = (Oé%q)lxq)ly + CY%CDQI(DQy)
Arz = (@ 1Py + a5 Do Poy)
A21 = A12

A22 = (Oé%q)%y + Oé%q)gy)

A23 = (Oé%q)lyq)lt + Oé%(:[)qu)gt>
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The solution to the system (3.11) is the deformation map that we call Harmonic Phase Flow.

Figure 3 sketches the main steps involved in the computation of the LV dynamics. Above
on the left, we can appreciate two incoming consecutive frames of a tagged sequence for which
we want to estimate the deformation among them. On the right, we show their wrapped
bi-dimensional harmonic representation which is depicted via stripe-like images. Images
shown in the center, that resemble the first frame without tags, are the weight functions and
represent the local reliability of the harmonic representation. The phases and the weights
are combined using the variational framework defined in (3.10) to obtain the dense harmonic
phase flow shown below.

3.3. Numerical Issues

The solution to the HPF flow is computed using an iterative finite difference scheme. Let
2
g = ( %1 0(4)2 >, o = M and ® = (®1,Py), then the Euler-Lagrange equation (3.11)
2
has the compact writing given by:

(Pog®))u + (Ppg®))v + Pog®) = (1 — a)*Au —2(1 — a)(Va, Vu)

for (-,-) denoting the scalar product and ’ the transpose of a vector. The system (3.12) can
be solved by treating u and v as functions of time and solving the gradient descent scheme:

ut(xa ya t) = _[(cDacg(Px)u(x? y7 t) + (¢mg©y)v<x7 yv t) + (Dmgq)t_
—(1 = a)?Au(z,y,t) + 2(1 — a)(Va, Vu(z, y,t))]
(3.13)
vy, t) = =[(P2gPy)ulz, y,t) + (PygPy)v(z, ¥, t) + PygPi—
—(1 = a)?Av(z,y,t) + 2(1 — a){Va, Vo(z, y,t))]

The steady-state of the above system of linear parabolic partial differential equations is the
solution to the Euler-Lagrange problem (3.11).

The first derivatives of the equation coefficients are computed using centered derivatives.
In order to set up the discrete iterative solution, let the indexes 7, 7 and n correspond to the
continuous variables z, y and ¢, respectively, and let the spacing between pixels be h, and h,,
and the time step h;. Then the partial derivatives can be approximated by finite differences
as:

Uy = %(“Z}F 11 - ug;)
ve =g, (Vi — o)

Uy = m(uz’,j—i-l — Ujjo1) Uy = iwi—lvj — Uis1)

Vo = g (Viger — Vigo1) Uy = g5 (Vie1y — Vitg)

T
_ 1 1
Au = g (Uigpr = 2ui5 + i) + gz (Ui — 25 + Ui )
1 1
Av = 57 (Vg1 = 2055 + Vi) + 5z (Vi = 2005 + Vi)
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Substituting these expressions into (3.13) and assuming equal spacing for pixels, namely h,
we get our iterative approach to HPF computation:

upf = (g by g — ) —
(1 — a)ho (1—a)ho
- Tx(uﬁjﬂ - u?,j—l) - Ty( ?—1,;‘ - u?—i—l,j) -

— (ap hyu™ + ajohv™ + b1 hy)

Zjl = " + T(Ui+1,j + Vi j+1 + U?fl,j + U;Ljfl — 47);3) —
ht(]' — Oé)Oém n n ht(l — Oé)Oé n n
- T(Uz‘,jﬂ - Ui,jfl) - Ty( i1, Uz‘+1,j) -
— (CLQthUn + aglhtu” + bght) (314)

for a;; = (9,9P,), a12 = a2l = (P,99P,), ar = (P,9P,), b1 = ©,9P; and by = O,gP;.
The r coeflicient is defined as the ratio:

(1 — 04)2ht
h2

r =

and determines the convergence of the iterative scheme [1, 32]. According to standard
arguments of theory of numerical methods, since all coefficients are bounded, the scheme
(3.14) converges as far as r < 1/4. Assuming unitary pixel spacing we have that:

hy max((1 — «)?)
r< 12

< hymax((1 — a)?)

Therefore the convergence condition is guaranteed provided that the time step satisfies:

1
fu < 4max((1 — a)?)

We recall that a measures the response to the Gabor filter. Therefore the scheme speed
increases in the rate that the tagging pattern is well defined.

4. HPF Accuracy

In order to assess the performance of the proposed HPF, we have created a 3D dynamic
model (fig. 4 a)). The geometry of the 3D model at initial time (end-diastole) is obtained
by considering 2 prolate spheroids that intersect at the most apical point. Points between
these two surfaces are tissue points called, at initial time, material points. Material points
have been tagged using the SPAMM tagging equations given in [31]. They have been evolved
according to the principal motions that the LV undergoes along the systolic cycle:
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Figure 4: Dynamic Synthetic Data. a) 3D dynamic myocardial model intersected by 4
representative acquisition planes. b) Synthetic tagged frames for phantom #1 at LA and
c) basal cuts. d) Basal sequence frames for phantom #2 simulating motionless (tagged and

untegged) background and 2 gaps without tagging pattern.

e Torsion: which is the angular difference between the most basal and most apical parts
of the LV.

e Radial Shortening: that makes the tissue to collapse towards the long axis of the
LV.

e Longitudinal Shortening: which causes the base to contract towards the apex which,
on the other hand, remains almost still.

The parameter ranges for this principal motions (obtained empirically) vary from 0 to
12 for torsion, from 0% to 18% for radial shortening and from 0% to 12% for longitudinal
shortening. The model used in the present paper is composed of 7 frames corresponding
to a uniform sampling of the parametric ranges. The discretization (7 frames/systolic cy-
cle) has been chosen to produce the mean number of frames per systolic cycle we have in
our experimental data. Two different 2D motion phantoms have been considered. A first
phantom (phantom #1 shown in fig.4 b) and ¢)) is obtained by intersecting the model with
planes representing the four acquisition cuts (base, middle, apex and LA). Since there is no
motion information missing, phantom #1 provides the base line for any systematic errors in
HPF'. In order to assess HPF ability for restoring missing information and preserving dis-
continuities at myocardial borders, a second phantom (phantom #2, shown in fig. 4 d)) has
been generated from phantom #1. Phantom #2 undergoes constant rotation and includes

88



J. Garcia-Barnés et al. Variational framework for assessment

HPF Basal Error - Phantom #1 HPF Mid Error - Phantom #1
1.2 1.2
1 1
208 208
x X
o o
E 0.6 E 08!
g S
o 0.4] g — w 0.4
80 O B A
T {ﬁﬁHﬁﬁﬁ;ﬁtnﬁmu;uuﬂ
% 20 ] 60 80 100 OEE 20 a0 60 80 100
% Systolic Cycle % Systolic Cycle
a) b)
HPF Apical Error - Phantom #1 HPF LA Error - Phantom #1

[N]
[N}

é 0.8 é 0.8
o o
€06 06
5 N S SN N
o4 Hoa
0 A i o
S | D
. ‘ ‘ ‘ - I
0 20 40 60 80 100 0 20 40 60 80 100
% Systolic Cycle % Systolic Cycle
c) d)
HPF Basal Error - Phantom #2 HPF Apical Error - Phantom #2
12 12
1 1
Los £Los
X X
o o
S 06| E06
5 5
o4 e 5 o4 =
g I, L
oI, e e 1]

o

20 40 60 80 40 60
% Systolic Cycle % Systolic Cycle

e) £)

Figure 5: HPF accuracy for the 2 dynamic phantoms. In dark bold line, the mean error
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between the real deformation map and the estimated one along the whole systolic cycle.
Vertical gray lines represent the standard deviation. Phantom #1: a) base, b) mid, ¢) apex

and d) long axis. Phantom #2: e) base, f) apex.

surrounding still tissue, that induce discontinuities in the tagging pattern. It also includes
noisy areas where the tagging pattern is not well defined or, even, missed.
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The Euclidean norm of the difference between the ground truth deformation used to
generate our dynamic phantom and the HPF flow is a measure of accuracy for each image
pixel. The mean and standard deviation for all image pixels, provide the error range for a
given frame (i.e. time). We denote by pf and o} the mean and standard deviation respectively
for a given time, t, and an acquisition plane, [ € {B, M, A, LA}. The character B stands
for basal cuts, M stands for mid cuts, A stands for apical cuts and LA stands for long axis
cuts. The values obtained for the 7 frames of the phantom are interpolated (cubically) to
the whole systolic cycle in order to provide a continuous error measure of the sequence.

Figure 5 shows the error values (in pixels) along the systolic cycle for each of the levels /
views for phantom #1 (fig. 5 a)-d)), and for base and apex for phantom #2 (fig. 5 e) and f)).
The dark bold line represents uf, while vertical gray lines represent of. The errors (vertical
axis) are given in pixels. Both phantoms present a similar error tendency with mean error
curves (below 0.3 pixels) almost constant along the systolic cycle. In order to localize any
increase in errors, their spatial distribution has been explored. Error maps along systole for
the basal sequence of phantom #2 are shown in figure 6 a). Two interesting conclusions are
extracted from the analysis of these error maps:

1. In general there is not any significant increase in error at myocardial boundary points
with the exception of frame 4, which presents an error of 1 pixel at the lower part of
the boundary. For this frame there is a sharp discrepancy between myocardial and
external tagging patterns. Since the amplitude of the Gabor response depends on the
strength of the main tagging pattern, at those points it has a significant decrease in a;’s
values (as shown in fig.6 b)). Such decrease in the weights introduces a fake activation
of the regularizing term which increases HPF error. A new measure of Gabor phase
consistency is currently under development.

2. The vector field extension provided by HPF successfully restores deformation maps
at gaps provided that their inner motion conforms to the motion available at their
boundaries. It follows that HPF achieves a high accuracy for the empty region at
the left upper part of phantom #2 in fig.4 d)). Meanwhile, in the case of the region
located at the right upper part of phantom #2 the error increases due to insufficient
information at its boundary.

The quality of the deformation field restored by HPF is ilustrated in fig. 7.

5. Experimental Data

Our experimental data set is composed of a total number of 19 healthy volunteers, 14 males
and 5 females aged between 23 and 55 (30£7.4). For each volunteer, several (ranging from
6 to 8) short axis tagging sequences covering the LV from base to apex were acquired. Also
4 equidistributed long axis planes (including 2 and 4 chambers) were obtained. In order
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Figure 6: HPF Error distribution analysis for phantom #2.: Error maps along systolic cycle

in a), and image weights («y, ) of the regularization term for frame 4 in b).

Figure 7: Details for a frame of the phantom #2 after applying HPF. In a) and b) gaps
(noise) have been filled with the surrounding values, due to action of the regularizing term
of the variational framework. In ¢) we can appreciate that in still tissue and air HPF detects

no motion. In d) we can observe motion detected over the left ventricular tissue.

to avoid misalignments due to breathing, sequences were recorded in breath-hold. For the
acquisition of the tagged sequences, a Siemens Avanto 1.5 T (Erlangen, Germany) equipment
was used. Images have an in-plane spatial resolution of 1.3 x 1.3 mm per pixel a thickness
of 6 mm per cut and a tag spacing of 4 mm. The flip angle is 14, the repetition time is 46
ms. and the echo time is 3.8 ms. Our sequences have approximately 7 frames (of mean size
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Figure 8: HPF accuracy for experimental data. In dark bold line, the mean error between
the real deformation map and the estimated one, along the whole systolic cycle. Vertical

gray lines represent the standard deviation for a) base, b) mid, ¢) apex and d) long axis.

89 x 94 pixels) per systolic cycle.

In a standard PC(Intel® Pentium® D CPU 3.00GHz.) processing sequences using MAT-
LAB takes about 2.6 min. for basal sequences, 0.8 min. for mid sequences, 3.1 min. for
apical sequences and 2.8 min. for LA sequences. The former processing times for the com-
putation of HPF include the two main steps: tuning of the Gabor filter banks for each view
and iterative solving of equation (14). In all cases, equation (14) converges in about 125 iter-
ations independently of the considered sequence view. The difference in times is essentially
due to the filtering process. The number of filters to apply depends on the complexity of
the motion observed. In this sense, since mid sequences present the simplest behavior they
have a smaller bank of filters.
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Table 2: Mean values of rotation and their standard deviation for basal (BR), mid (M R)and
apical (AR) levels. Torsion (7') is also showed. Values are given for 6 stages of the systolic

cycle: at 17%, 33%, 50%, 67%, 83%, and 100%.

17% 33% 50% 67% 83% 100%
BR 0.7£0.2 0.6 £0.5 —0.7£0.8 —23+1.0 —3.3+1.0 —32=£1
MR 1.3+£0.3 2.5 £04 22£0.7 1.5+£0.9 1.4+£0.9 27£16
AR 1.5+0.3 28+0.7 3.3=E1 3.6E1.3 46=E1.5 74+£2
T 0.7+04 22+0.7 41+1 6+14 7.8+ 1.7 10.7 £ 1.8

5.1. Experimental Accuracy

For assessing experimental accuracy, we have analyzed 7 cases randomly selected. For each
sequence, we have automatically (and randomly) selected N(= 25) points uniformly spread
inside the LV at the initial frame. An expert was asked to manually track these points along
the systolic cycle, which provided us with an ”expert-dependent” sparse ground truth. For
each sequence, its error has been computed as in the previous section. Precision results for
each type of sequence (Basal, Mid, Apical and LA) are given by the mean and standard
deviation computed over the 7 cases.

Results can be seen separately for each type of sequence in figure 8, where the mean is
depicted in dark bold line and the standard deviation is represented in vertical gray lines.
As in the previous section, error ranges are given in pixels. Although the error is higher than
in synthetic sequences, the mean error is close to pixel accuracy. In fact, it keeps within
subpixel accuracy with the exception of the basal cut between 50% and 80% of the systolic
cycle. We attribute this fact to the presence of large zones with noise over the myocardium.
It follows that the reliable information provided by the HARP images is so sparse that HPF
restores a flow that is prone to differ from the true motion.

In figure 9 we show the HPF-based tracking of the myocardial tissue in 3 stages cov-
ering the systolic cycle. Contours have been segmented manually at the initial frame and
automatically evolved in further stages.

5.2. Clinical Applicability

We have computed the normality patterns for the basal, mid and apical rotation, and the
myocardial torsion. Although torsion is an oversimplified value, it is of clinical interest since
it is a simple score that reflects the overall cardiac function (like the widely used ejection
fraction) as it relates to the LV ejection and filling [18]. Rotational data was obtained taking
as reference, points at initial time of systole (material points). The trajectory of these points
was taken into account and for each one the rotation with respect its material point was
computed using as center of rotation the centroid of the left ventricle at each frame. Rotation
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APEX

LA

Figure 9: HPF-based contour tracking. The initial contours (first column) of basal, mid,
apical and LA instances, have been tracked using HPF, and results are shown at 50% (second

row) and 100% of the systolic cycle.

at a certain instant, arises as the mean rotation of all the points in the myocardium at such
instant. The myocardial torsion is defined as the difference in rotation between the most
apical and basal short axis planes. Normality patterns are obtained by averaging the rotation
profiles extracted from the 19 healthy cases. Trimmed statistics (computed with values
between the percentiles 5% and 95%) were used to minimize the impact of artifacts during
acquisition time. Tagged MRI acquisition might present the following 2 artifacts: Subject
motion and variability in the position of the acquisition plane. A strong presence of both
phenomena might introduce outlying motions, although this seldom happens (approximately
a 6% of the cases in our sequences).
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Figure 10: Normality Patterns for basal, mid and apical rotation and myocardial torsion,
extracted from a set of 19 healthy volunteers. Torsional values are obtained by the difference

between the apical and basal rotations.

The normality patterns for rotation and torsion are plotted in fig.10. The horizontal axis
shows the percentage of the systolic cycle achieved and the vertical one the rotation and
torsion in degrees. In the case of the torsion we show (in bright gray lines) its variability
range given by the standard deviation of the 19 patterns considered. The average plots for
rotation show that all three levels start rotating counterclockwise (seen from apex to base)
and at 23% and 38% of the cycle, base and mid change to clockwise rotation respectively.
At these points they reached a rotation of 0.85 and 2.63. Later, at 92% and 78% (—3.48,
1.37) base and mid, turn again to counterclockwise rotation until reaching the end of the
systolic cycle (—3.2, 2.7). On the other hand, apex experiments a non-decreasing rotation
(counterclockwise) during all the systolic cycle. In its central interval, from 45% to 64%
approximately, rotation remains almost constant as it varies from 3.3 to 3.5. This fact
means that, in this period of time, radial shortening predominates over rotation. It is
worth to mention that, despite the nonlinear rotational behavior that all levels undergo, the
resultant torsion values vary almost linearly with time. We note that the curves obtained
with the HPF are comparable to those obtained by manually selecting points in [23].

In Table 2 we show the numeric range at some representative systolic stages. Statistical
ranges are given by the mean plus minus the standard deviation of the subjects analyzed.
We attribute the apparent increase in ranges for torsion to an increase in its values, since,
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in fact, the relative range decreases from 57% at begin systole to 16% at end-systole. Still, a
standard deviation below 2 selects torsion as a reliable parameter to be taken into account
in clinical routine for myocardial function assessment.

6. Discussion and Future Research

In this paper we have presented a novel method to track left ventricular deformations
along the whole systolic cycle from tagged MR sequences. Gabor filter banks provide a
bi-dimensional harmonic representation of each frame where the brightness constancy is ful-
filled along the cycle. Both representations are tracked using optical flow in a variational
framework that regularizes motion just in the presence of noise. The solution of this func-
tional is the deformation map that estimates LV function and which we call Harmonic Phase
Flow (HPF).

HPF accuracy has been tested in, both, synthetic and experimental data. We have
generated 2 synthetic models. The first one (phantom #1) considers the main basic cardiac
motions and serves to set HPF base-line error. The second one introduces background
still tissue and gaps in tag pattern. In this way we have explored HPF capabilities for
preserving discontinuities at myocardial borders as well as information filling. In all cases,
HPF achieved subpixel accuracy (0.3 pixels average) along the whole cycle which shows
that there are not any systematic errors. The analysis of error distribution for phantom #2
prompts 2 interesting properties. Firstly, HPF properly retrieves motion information in the
presence of gaps in the tagging pattern. Secondly, HPF preserves motion discontinuities as
far as tags do not present a sharp corner-like pattern. This might produce a decrease in HPF
accuracy at some parts of the myocardial borders. This is common to all existing methods
and, in our case, might be solved by modifying the weighting functions.

For experimental data we used a set of 7 sequences for each level and view. Myocardial
points were manually tracked by an expert in order to provide the ground truth deformation
to be compared to the HPF estimation of motion. We nota that, in this way, statistics do
not take into account inter-observer variability. With the exception of a short interval in the
basal sequences where it reaches 1.2 pixels, in all cases the mean error, although higher than
in synthetic data, achieved subpixel accuracy. The increase in error in real sequences is due
to thermal noise which corrupts the HARP images. Constancy in error along the systolic
cycle proves the method robustness to the fading effect.

The clinical potential of HPF tracking is illustrated by computing normality patterns
(given by the the mean and standard deviation for all cases) for two clinical global scores,
myocardial rotation and torsion in 19 healthy cases. The mean and standard deviation for
all subjects give normality patterns. The curves obtained correlate to the ones extracted by
manually tracking myocardial points [23].

Our current research focus on two main issues:
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e Regional Normality Models of Motion. The observable gross anatomy of the LV,

is consequence of the particular disposition of the myocardial fibers in the 3D space
[29]. This disposition strongly affects the dynamical behavior of the heart, leading to
a non-isotropic motion of tissue. We are working on the definition of a normalized
domain that will alow inter-patient comparison of their deformation maps, in order to
characterize the regional dynamics at the different SA levels.

3D Dynamics. The estimated deformation maps extracted from image sequences
are, in fact, a 2D projection of the real deformation that heart undergoes in the 3D
space. We are also working on extending the 2D apparent maps provided by the HPF
to the whole myocardial 3D volume using the intersection of several SA and LA TMR
acquisition planes.
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