toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Saad Minhas; Zeba Khanam; Shoaib Ehsan; Klaus McDonald Maier; Aura Hernandez-Sabate edit  doi
openurl 
  Title Weather Classification by Utilizing Synthetic Data Type Journal Article
  Year 2022 Publication Sensors Abbreviated Journal SENS  
  Volume 22 Issue 9 Pages 3193  
  Keywords Weather classification; synthetic data; dataset; autonomous car; computer vision; advanced driver assistance systems; deep learning; intelligent transportation systems  
  Abstract Weather prediction from real-world images can be termed a complex task when targeting classification using neural networks. Moreover, the number of images throughout the available datasets can contain a huge amount of variance when comparing locations with the weather those images are representing. In this article, the capabilities of a custom built driver simulator are explored specifically to simulate a wide range of weather conditions. Moreover, the performance of a new synthetic dataset generated by the above simulator is also assessed. The results indicate that the use of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in vision-based datasets.  
  Address 21 April 2022  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.159; 600.166; 600.145; Approved no  
  Call Number Admin @ si @ MKE2022 Serial 3761  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Antoni Carol; Oriol Rodriguez; Petia Radeva edit   pdf
openurl 
  Title A Deterministic-Statistic Adventitia Detection in IVUS Images Type Conference Article
  Year 2005 Publication ESC Congress Abbreviated Journal  
  Volume Issue Pages  
  Keywords Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation  
  Abstract Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.  
  Address Stockholm; Sweden; September 2005  
  Corporate Author Thesis  
  Publisher Place of Publication (up) ,Sweden (EU) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ESC  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ RMF2005a Serial 1523  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate edit   pdf
openurl 
  Title Automatic adventitia segmentation in IntraVascular UltraSound images Type Report
  Year 2005 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 85 Pages  
  Keywords  
  Abstract A usual tool in cardiac disease diagnosis is vessel plaque assessment by analysis of IVUS sequences. Manual detection of lumen-intima, intima-media and media-adventitia vessel borders is the main activity of physicians in the process of plaque quantification. Large variety in vessel border descriptors, as well as, shades, artifacts and blurred response due to ultrasound physical properties troubles automated media-adventitia segmentation. This experimental work presents a solution to such a complex problem. The process blends advanced anisotropic filtering operators and statistic classification techniques, achieving an efficient vessel border modelling strategy. First of all, we introduce the theoretic base of the method. After that, we show the steps of the algorithm, validating the method with statistics that show that the media-adventitia border detection achieves an accuracy in the range of inter-observer variability regardless of plaque nature, vessel geometry and incomplete vessel borders. Finally, we present a little Matlab application to the automatic media-adventitia border.  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication (up) 08193 Bellaterra, Barcelona (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Her2005 Serial 1544  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Petia Radeva edit   pdf
openurl 
  Title On the usefulness of supervised learning for vessel border detection in IntraVascular Imaging Type Conference Article
  Year 2005 Publication Proceeding of the 2005 conference on Artificial Intelligence Research and Development Abbreviated Journal  
  Volume Issue Pages 67-74  
  Keywords classification; vessel border modelling; IVUS  
  Abstract IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis of cardiac diseases since sequences completely show the morphology of coronary vessels. Vessel borders detection, especially the external adventitia layer, plays a central role in morphological measures and, thus, their segmentation feeds development of medical imaging techniques. Deterministic approaches fail to yield optimal results due to the large amount of IVUS artifacts and vessel borders descriptors. We propose using classification techniques to learn the set of descriptors and parameters that best detect vessel borders. Statistical hypothesis test on the error between automated detections and manually traced borders by 4 experts show that our detections keep within inter-observer variability.  
  Address  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication (up) Amsterdam, The Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ HGR2005c Serial 1549  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title A Confidence Measure for Assessing Optical Flow Accuracy in the Absence of Ground Truth Type Conference Article
  Year 2011 Publication IEEE International Conference on Computer Vision – Workshops Abbreviated Journal  
  Volume Issue Pages 2042-2049  
  Keywords IEEE International Conference on Computer Vision – Workshops  
  Abstract Optical flow is a valuable tool for motion analysis in autonomous navigation systems. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in real world sequences. This paper introduces a measure of optical flow accuracy for Lucas-Kanade based flows in terms of the numerical stability of the data-term. We call this measure optical flow condition number. A statistical analysis over ground-truth data show a good statistical correlation between the condition number and optical flow error. Experiments on driving sequences illustrate its potential for autonomous navigation systems.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication (up) Barcelona (Spain) Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ MGH2011 Serial 1682  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; David Roche; Monica M. S. Matsumoto; Sergio S. Furuie edit   pdf
url  openurl
  Title Inferring the Performance of Medical Imaging Algorithms Type Conference Article
  Year 2011 Publication 14th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 6854 Issue Pages 520-528  
  Keywords Validation, Statistical Inference, Medical Imaging Algorithms.  
  Abstract Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence.
 
  Address Sevilla  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication (up) Berlin Editor Pedro Real; Daniel Diaz-Pernil; Helena Molina-Abril; Ainhoa Berciano; Walter Kropatsch  
  Language Summary Language Original Title  
  Series Editor Series Title L Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CAIP  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ HGR2011 Serial 1676  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Petia Radeva; E.N.Nofrerias edit   pdf
doi  openurl
  Title Anisotropic processing of image structures for adventitia detection in intravascular ultrasound images Type Conference Article
  Year 2004 Publication Proc. Computers in Cardiology Abbreviated Journal  
  Volume 31 Issue Pages 229-232  
  Keywords  
  Abstract The adventitia layer appears as a weak edge in IVUS images with a non-uniform grey level, which difficulties its detection. In order to enhance edges, we apply an anisotropic filter that homogenizes the grey level along the image significant structures (ridges, valleys and edges). A standard edge detector applied to the filtered image yields a set of candidate points prone to be unconnected. The final model is obtained by interpolating the former line segments along the tangent direction to the level curves of the filtered image with an anisotropic contour closing technique based on functional extension principles  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Chicago (USA) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HGR2004 Serial 1555  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Petia Radeva; Antonio Tovar; Debora Gil edit   pdf
url  openurl
  Title Vessel structures alignment by spectral analysis of ivus sequences Type Conference Article
  Year 2006 Publication Proc. of CVII, MICCAI Workshop Abbreviated Journal  
  Volume Issue Pages 39-36  
  Keywords  
  Abstract Three-dimensional intravascular ultrasound (IVUS) allows to visualize and obtain volumetric measurements of coronary lesions through an exploration of the cross sections and longitudinal views of arteries. However, the visualization and subsequent morpho-geometric measurements in IVUS longitudinal cuts are subject to distortion caused by periodic image/vessel motion around the IVUS catheter. Usually, to overcome the image motion artifact ECG-gating and image-gated approaches are proposed, leading to slowing the pullback acquisition or disregarding part of IVUS data. In this paper, we argue that the image motion is due to 3-D vessel geometry as well as cardiac dynamics, and propose a dynamic model based on the tracking of an elliptical vessel approximation to recover the rigid transformation and align IVUS images without loosing any IVUS data. We report an extensive validation with synthetic simulated data and in vivo IVUS sequences of 30 patients achieving an average reduction of the image artifact of 97% in synthetic data and 79% in real-data. Our study shows that IVUS alignment improves longitudinal analysis of the IVUS data and is a necessary step towards accurate reconstruction and volumetric measurements of 3-D IVUS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Copenhaguen (Denmark), Editor  
  Language Summary Language Original Title  
  Series Editor Series Title 1st International Wokshop on Computer Vision for Intravascular and Intracardiac Imaging (CVII’06) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HRT2006 Serial 1552  
Permanent link to this record
 

 
Author F.Guirado; Ana Ripoll; C.Roig; Aura Hernandez-Sabate; Emilio Luque edit   pdf
openurl 
  Title Exploiting Throughput for Pipeline Execution in Streaming Image Processing Applications Type Book Chapter
  Year 2006 Publication Euro-Par 2006 Parallel Processing Abbreviated Journal LNCS  
  Volume 4128 Issue Pages 1095-1105  
  Keywords 12th International Euro–Par Conference  
  Abstract There is a large range of image processing applications that act on an input sequence of image frames that are continuously received. Throughput is a key performance measure to be optimized when execu- ting them. In this paper we propose a new task replication methodology for optimizing throughput for an image processing application in the field of medicine. The results show that by applying the proposed methodo- logy we are able to achieve the desired throughput in all cases, in such a way that the input frames can be processed at any given rate.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication (up) Dresden, Germany (European Union) Editor UAB; W, E.N.; et al.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes In Computer Science Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Euro–Par  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GRR2006a Serial 1542  
Permanent link to this record
 

 
Author Patricia Marquez;Debora Gil;Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title A Complete Confidence Framework for Optical Flow Type Conference Article
  Year 2012 Publication 12th European Conference on Computer Vision – Workshops and Demonstrations Abbreviated Journal  
  Volume 7584 Issue 2 Pages 124-133  
  Keywords Optical flow, confidence measures, sparsification plots, error prediction plots  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication (up) Florence, Italy, October 7-13, 2012 Editor Andrea Fusiello, Vittorio Murino ,Rita Cucchiara  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-33867-0 Medium  
  Area Expedition Conference ECCVW  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MGH2012b Serial 1991  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: