toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Saad Minhas; Zeba Khanam; Shoaib Ehsan; Klaus McDonald Maier; Aura Hernandez-Sabate edit  doi
openurl 
  Title Weather Classification by Utilizing Synthetic Data Type Journal Article
  Year 2022 Publication Sensors Abbreviated Journal SENS  
  Volume 22 Issue 9 Pages 3193  
  Keywords Weather classification; synthetic data; dataset; autonomous car; computer vision; advanced driver assistance systems; deep learning; intelligent transportation systems  
  Abstract Weather prediction from real-world images can be termed a complex task when targeting classification using neural networks. Moreover, the number of images throughout the available datasets can contain a huge amount of variance when comparing locations with the weather those images are representing. In this article, the capabilities of a custom built driver simulator are explored specifically to simulate a wide range of weather conditions. Moreover, the performance of a new synthetic dataset generated by the above simulator is also assessed. The results indicate that the use of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in vision-based datasets.  
  Address 21 April 2022  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.159; 600.166; 600.145; Approved no  
  Call Number Admin @ si @ MKE2022 Serial 3761  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: