toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (down)
Author Sergio Vera; Debora Gil; Agnes Borras; Marius George Linguraru; Miguel Angel Gonzalez Ballester edit   pdf
url  doi
openurl 
  Title Geometric Steerable Medial Maps Type Journal Article
  Year 2013 Publication Machine Vision and Applications Abbreviated Journal MVA  
  Volume 24 Issue 6 Pages 1255-1266  
  Keywords Medial Representations ,Medial Manifolds Comparation , Surface , Reconstruction  
  Abstract In order to provide more intuitive and easily interpretable representations of complex shapes/organs, medial manifolds should reach a compromise between simplicity in geometry and capability for restoring the anatomy/shape of the organ/volume. Existing morphological methods show excellent results when applied to 2D objects, but their quality drops across dimensions.
This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoids degenerated medial axis segments. Second, we introduce a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to syn- thetic shapes of known medial geometry. We also show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Mubarak Shah  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0932-8092 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 605.203; 600.060; 600.044 Approved no  
  Call Number IAM @ iam @ VGB2013 Serial 2192  
Permanent link to this record
 

 
Author Debora Gil; Agnes Borras; Manuel Ballester; Francesc Carreras; Ruth Aris; Manuel Vazquez; Enric Marti; Ferran Poveda edit   pdf
url  doi
isbn  openurl
  Title MIOCARDIA: Integrating cardiac function and muscular architecture for a better diagnosis Type Conference Article
  Year 2011 Publication 14th International Symposium on Applied Sciences in Biomedical and Communication Technologies Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep understanding of myocardial structure of the heart would unravel crucial knowledge for clinical and medical procedures. The MIOCARDIA project is a multidisciplinary project in cooperation with l'Hospital de la Santa Creu i de Sant Pau, Clinica la Creu Blanca and Barcelona Supercomputing Center. The ultimate goal of this project is defining a computational model of the myocardium. The model takes into account the deep interrelation between the anatomy and the mechanics of the heart. The paper explains the workflow of the MIOCARDIA project. It also introduces a multiresolution reconstruction technique based on DT-MRI streamlining for simplified global myocardial model generation. Our reconstructions can restore the most complex myocardial structures and provides evidences of a global helical organization.  
  Address Barcelona; Spain  
  Corporate Author Association for Computing Machinery Thesis  
  Publisher Place of Publication Barcelona, Spain Editor Association for Computing Machinery  
  Language english Summary Language english Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-0913-4 Medium  
  Area Expedition Conference ISABEL  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGB2011 Serial 1691  
Permanent link to this record
 

 
Author Marçal Rusiñol; Agnes Borras; Josep Llados edit  doi
openurl 
  Title Relational Indexing of Vectorial Primitives for Symbol Spotting in Line-Drawing Images Type Journal Article
  Year 2010 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 31 Issue 3 Pages 188–201  
  Keywords Document image analysis and recognition, Graphics recognition, Symbol spotting ,Vectorial representations, Line-drawings  
  Abstract This paper presents a symbol spotting approach for indexing by content a database of line-drawing images. As line-drawings are digital-born documents designed by vectorial softwares, instead of using a pixel-based approach, we present a spotting method based on vector primitives. Graphical symbols are represented by a set of vectorial primitives which are described by an off-the-shelf shape descriptor. A relational indexing strategy aims to retrieve symbol locations into the target documents by using a combined numerical-relational description of 2D structures. The zones which are likely to contain the queried symbol are validated by a Hough-like voting scheme. In addition, a performance evaluation framework for symbol spotting in graphical documents is proposed. The presented methodology has been evaluated with a benchmarking set of architectural documents achieving good performance results.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RBL2010 Serial 1177  
Permanent link to this record
 

 
Author Debora Gil; Sergio Vera; Agnes Borras; Albert Andaluz; Miguel Angel Gonzalez Ballester edit   pdf
doi  openurl
  Title Anatomical Medial Surfaces with Efficient Resolution of Branches Singularities Type Journal Article
  Year 2017 Publication Medical Image Analysis Abbreviated Journal MIA  
  Volume 35 Issue Pages 390-402  
  Keywords Medial Representations; Shape Recognition; Medial Branching Stability ; Singular Points  
  Abstract Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a con dent application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an ecient GPU-CPU implementation using standard image processing tools. We show the method computational eciency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.060; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ GVB2017 Serial 2775  
Permanent link to this record
 

 
Author Debora Gil; Ruth Aris; Agnes Borras; Esmitt Ramirez; Rafael Sebastian; Mariano Vazquez edit   pdf
doi  openurl
  Title Influence of fiber connectivity in simulations of cardiac biomechanics Type Journal Article
  Year 2019 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCAR  
  Volume 14 Issue 1 Pages 63–72  
  Keywords Cardiac electromechanical simulations; Diffusion tensor imaging; Fiber connectivity  
  Abstract PURPOSE:
Personalized computational simulations of the heart could open up new improved approaches to diagnosis and surgery assistance systems. While it is fully recognized that myocardial fiber orientation is central for the construction of realistic computational models of cardiac electromechanics, the role of its overall architecture and connectivity remains unclear. Morphological studies show that the distribution of cardiac muscular fibers at the basal ring connects epicardium and endocardium. However, computational models simplify their distribution and disregard the basal loop. This work explores the influence in computational simulations of fiber distribution at different short-axis cuts.

METHODS:
We have used a highly parallelized computational solver to test different fiber models of ventricular muscular connectivity. We have considered two rule-based mathematical models and an own-designed method preserving basal connectivity as observed in experimental data. Simulated cardiac functional scores (rotation, torsion and longitudinal shortening) were compared to experimental healthy ranges using generalized models (rotation) and Mahalanobis distances (shortening, torsion).

RESULTS:
The probability of rotation was significantly lower for ruled-based models [95% CI (0.13, 0.20)] in comparison with experimental data [95% CI (0.23, 0.31)]. The Mahalanobis distance for experimental data was in the edge of the region enclosing 99% of the healthy population.

CONCLUSIONS:
Cardiac electromechanical simulations of the heart with fibers extracted from experimental data produce functional scores closer to healthy ranges than rule-based models disregarding architecture connectivity.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 601.323; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GAB2019a Serial 3133  
Permanent link to this record
 

 
Author Debora Gil; David Roche; Agnes Borras; Jesus Giraldo edit  doi
openurl 
  Title Terminating Evolutionary Algorithms at their Steady State Type Journal Article
  Year 2015 Publication Computational Optimization and Applications Abbreviated Journal COA  
  Volume 61 Issue 2 Pages 489-515  
  Keywords Evolutionary algorithms; Termination condition; Steady state; Differential evolution  
  Abstract Assessing the reliability of termination conditions for evolutionary algorithms (EAs) is of prime importance. An erroneous or weak stop criterion can negatively affect both the computational effort and the final result. We introduce a statistical framework for assessing whether a termination condition is able to stop an EA at its steady state, so that its results can not be improved anymore. We use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in decision variable space. Our framework is analyzed across 24 benchmark test functions and two standard termination criteria based on function fitness value in objective function space and EA population decision variable space distribution for the differential evolution (DE) paradigm. Results validate our framework as a powerful tool for determining the capability of a measure for terminating EA and the results also identify the decision variable space distribution as the best-suited for accurately terminating DE in real-world applications.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-6003 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.044; 605.203; 600.060; 600.075 Approved no  
  Call Number Admin @ si @ GRB2015 Serial 2560  
Permanent link to this record
 

 
Author Debora Gil; Agnes Borras; Sergio Vera; Miguel Angel Gonzalez Ballester edit   pdf
doi  isbn
openurl 
  Title A Validation Benchmark for Assessment of Medial Surface Quality for Medical Applications Type Conference Article
  Year 2013 Publication 9th International Conference on Computer Vision Systems Abbreviated Journal  
  Volume 7963 Issue Pages 334-343  
  Keywords Medial Surfaces; Shape Representation; Medical Applications; Performance Evaluation  
  Abstract Confident use of medial surfaces in medical decision support systems requires evaluating their quality for detecting pathological deformations and describing anatomical volumes. Validation in the medical imaging field is a challenging task mainly due to the difficulties for getting consensual ground truth. In this paper we propose a validation benchmark for assessing medial surfaces in the context of medical applications. Our benchmark includes a home-made database of synthetic medial surfaces and volumes and specific scores for evaluating surface accuracy, its stability against volume deformations and its capabilities for accurate reconstruction of anatomical volumes.  
  Address Sant Petersburg; Russia; July 2013  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-39401-0 Medium  
  Area Expedition Conference ICVS  
  Notes IAM; 600.044; 600.060 Approved no  
  Call Number Admin @ si @ GBV2013 Serial 2300  
Permanent link to this record
 

 
Author Debora Gil;Agnes Borras;Ruth Aris;Mariano Vazquez;Pierre Lafortune; Guillame Houzeaux edit   pdf
doi  isbn
openurl 
  Title What a difference in biomechanics cardiac fiber makes Type Conference Article
  Year 2012 Publication Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges Abbreviated Journal  
  Volume 7746 Issue Pages 253-260  
  Keywords  
  Abstract Computational simulations of the heart are a powerful tool for a comprehensive understanding of cardiac function and its intrinsic relationship with its muscular architecture. Cardiac biomechanical models require a vector field representing the orientation of cardiac fibers. A wrong orientation of the fibers can lead to a
non-realistic simulation of the heart functionality. In this paper we explore the impact of the fiber information on the simulated biomechanics of cardiac muscular anatomy. We have used the John Hopkins database to perform a biomechanical simulation using both a synthetic benchmark fiber distribution and the data obtained experimentally from DTI. Results illustrate how differences in fiber orientation affect heart deformation along cardiac cycle.
 
  Address Nice, France  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-36960-5 Medium  
  Area Expedition Conference STACOM  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GBA2012 Serial 1987  
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Agnes Borras; F. Javier Sanchez; Frederic Perez; Marius G. Linguraru; Miguel Angel Gonzalez Ballester edit   pdf
doi  isbn
openurl 
  Title Computation and Evaluation of Medial Surfaces for Shape Representation of Abdominal Organs Type Book Chapter
  Year 2012 Publication Workshop on Computational and Clinical Applications in Abdominal Imaging Abbreviated Journal  
  Volume 7029 Issue Pages 223–230  
  Keywords medial manifolds, abdomen.  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D
objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial
manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our
method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs,
exploring the use of medial manifolds for the representation of multi-organ relations.
 
  Address Toronto; Canada;  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Berlin Editor H. Yoshida et al  
  Language English Summary Language English Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-28556-1 Medium  
  Area Expedition Conference ABDI  
  Notes IAM;MV Approved no  
  Call Number IAM @ iam @ VGB2012 Serial 1834  
Permanent link to this record
 

 
Author Agnes Borras; Josep Llados edit   pdf
doi  isbn
openurl 
  Title Similarity-Based Object Retrieval Using Appearance and Geometric Feature Combination Type Book Chapter
  Year 2007 Publication 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4477:113–120 Abbreviated Journal LNCS  
  Volume 4478 Issue Pages 33–39  
  Keywords  
  Abstract This work presents a content-based image retrieval system of general purpose that deals with cluttered scenes containing a given query object. The system is flexible enough to handle with a single image of an object despite its rotation, translation and scale variations. The image content is divided in parts that are described with a combination of features based on geometrical and color properties. The idea behind the feature combination is to benefit from a fuzzy similarity computation that provides robustness and tolerance to the retrieval process. The features can be independently computed and the image parts can be easily indexed by using a table structure on every feature value. Finally a process inspired in the alignment strategies is used to check the coherence of the object parts found in a scene. Our work presents a system of easy implementation that uses an open set of features and can suit a wide variety of applications.  
  Address Girona (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-540-72848-1 Medium  
  Area Expedition Conference  
  Notes DAG; Approved no  
  Call Number DAG @ dag @ BoL2007a; IAM @ iam @ BoL2007a Serial 776  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: