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Abstract. Medial representations are powerful tools for describing and param-
eterizing the volumetric shape of anatomical structures. Existing methods show
excellent results when applied to 2D objects, but their quality drops across di-
mensions. This paper contributes to the computation of medial manifolds in two
aspects. First, we provide a standard scheme for the computation of medial man-
ifolds that avoid degenerated medial axis segments; second, we introduce an en-
ergy based method which performs independently of the dimension. We evaluate
quantitatively the performance of our method with respect to existing approaches,
by applying them to synthetic shapes of known medial geometry. Finally, we
show results on shape representation of multiple abdominal organs, exploring the
use of medial manifolds for the representation of multi-organ relations.
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1 Introduction

Abdominal diagnosis relies on the comprehensive analysis of groups of organs [10].
Besides the organ appearance and size, the shapes of the organs can be indicators of
disorders. Abdominal organs follow global shape constraints, which have proved ex-
ceptionally useful to guide segmentation algorithms, for example for the liver [8]. Al-
though local shape differences are key to diagnosis, they are difficult to model without
an adequate shape representation [14].

Medial manifolds of organs have proved robust and accurate to study group differ-
ences in the brain [4,17]. In the abdomen, shape-based modeling could reveal biomark-
ers for diagnosis by identifying unusual anatomy and its relation to neighboring organs.
Additionally, organ locations, generally defined by centroids [19], and more recently
by pose [11], can be more comprehensively characterized by medial manifolds, more
intuitive and easily interpretable representations of complex organs.

In order to provide accurate meshes of anatomical geometry, the extraction of me-
dial manifolds should satisfy three main conditions [13]: homotopy (mantain the same
topology of the original shape), thinness (the resulting medial shape should be one pixel
wide, taking into account the specific choice of connectivity), and medialness (the me-
dial structure should lie as close as possible to the center of the original object). Most
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methods for medial surface computation are based on morphological thinning opera-
tions on binary segmentations. Such methods require the definition of a neighborhood
set and conditions for the removal of simple voxels, i.e. voxels that can be removed
without changing the topology of the object. These definitions are trivial in 2D, but
their complexity increases exponentially with the dimension of the embedding space
[9]. Further, simplicity tests alone only produce (1D) medial axis so additional tests are
needed to know if a voxel lies in a surface and thus cannot be deleted even if it is sim-
ple [13]. Moreover, surface tests might introduce medial axis segments in the medial
surface, which is against the mathematical definition of manifold and that may require
further pruning [13,1].

Alternative methods rely on an energy map to ensure medialness on the manifold.
Often, this energy image is the distance map of the object [13] or another energy derived
from it, like the average outward flux [16,4], level set [15,18] or ridges of the distance
map [6]. However, to obtain a manifold from the energy image, most methods rely on
morphological thinning, in a two step process [4,13,16], thus inheriting the weak points
of morphological methods.

The contribution of this paper is a two step method for medial surface computation
based on the ridges of the distance map. Firstly, as energy image we propose the ridges
of the distance map, based on a normalized ridge operator. Secondly, our binarization
step is free of topology rules, as it is based on Non-Maxima Suppression (NMS) [5].
Given that, regardless of the space dimension, NMS only requires 1 direction to be
defined, our method scales well with dimension. Quantitative evaluation of our method
in comparison with existing approaches is shown on synthetic shapes of known medial
geometry. Finally, results are shown on sets of segmented livers obtained from [8], as
well as multi-organ datasets [14].

2 Extracting Anatomical Medial Surfaces

The computation of medial manifolds from a segmented volume may be split into two
main steps: computation of a medial map from the original volume and binarization of
such map. Medial maps should achieve a discriminant value on the shape central vox-
els. Meanwhile, the binarization step should ensure that the resulting medial structures
fulfill the three conditions: medialness, thinness and homotopy.

Distance transforms are the basis for obtaining medial manifolds in any dimension.
The distance map is generated by computing the Euclidean distance transform of the
binary mask representing the volumetric shape. By definition, the maximum values of
the distance map are located at the center of the shape at voxels corresponding to the
medial structure. It follows that the medial surface could be extracted from the raw
distance map by an iterative thinning process [13]. Two alternative binarizations that
scale well with dimension are thresholding and NMS. Thresholding keeps pixels with
medial map energy above a given value. Therefore, it requires that the medial map is
constant along the medial surface. Non-Maxima Suppression keeps only those pixels
attaining a local maximum of the medial map in a given direction. Unless the medial
map maxima are flat, NMS also produces one pixel-wide surfaces.
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Further examination of the distance map shows that its central maximal voxels are
connected and constitute a ridge surface of the distance map. We propose using a nor-
malized ridge map with NMS-based binarization for computing medial surfaces.

2.1 Normalized Medial Map

Ridges/valleys in a digital N-Dimensional image are defined as the set of points that are
extrema (minima for ridges and maxima for valleys) in the direction of greatest mag-
nitude of the second order directional derivative [7]. From the available operators for
ridge detection, we chose the creaseness measure described in [12] because it provides
(normalized) values in the range [— N, N|. The ridgeness operator is computed by the
structure tensor of the distance map as follows.

Let D denote the distance map to the shape and let its gradient, VD, be computed
by convolution with partial derivatives of a Gaussian kernel:

VD = (0;Dy,0yDy,0;Dy) = (0295 * D,0ygs * D, 0,95 * D)

being g, a Gaussian kernel of variance o and 0, 9, and 0, partial derivative operators.
The structure tensor or second order matrix [2] is given by averaging the projection
matrices onto the distance map gradient:

Gp * 0, D2 9p * 02 D50y Dy gy * 0, D50, Dy
ST po(D) = | gp* 02 Ds0yDs 9p * 0y D2 9p * Oy Dy 0 Do (1)
Gp * 0:D,0,Dy g, % 0yDy0, Dy gp * 0, D2

for g, a Gaussian kernel of variance p. Let V' be the eigenvector of principal eigenvalue
of ST, »(D) and consider its reorientation along the distance gradient, V = (P, Q, R),
given as:

V =sign(< V-VD >)-V

for < - > the scalar product. The ridgeness measure [12] is given by the divergence:

R :=div(V) = 0, P+ 9,Q + 0.R 2)

The above operator assigns positive values to ridge pixels and negative values to valley
ones. The more positive the value is, the stronger the ridge patterns are. A main advan-
tage over other operators (such as second order oriented Gaussian derivatives) is that
R € [-N, N] for N the dimension of the volume. In this way, it is possible to set a
threshold, 7, common to any volume for detecting significant ridges and, thus, points
highly likely to belong to the medial surface.

2.2 Non-maxima Suppression Binarization

We use NMS to obtain the voxels with higher ridgeness value and obtain a thin, one
pixel wide medial surface. NMS consists in checking the two neighbors of a pixel in a
specific direction, V', and delete pixels if their value is not the maximum one:
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'R(x,y,z) lf'R(x,y,z) > maX(Rv+(I,y,Z), RV*(I7yvz))

NMS(z,y,2) = {0 otherwise

forRyy =R(x+Vo,y+Vy,z+ V) and Ry_ = R(x — Vi, y — Viyy 2 — V).

A main requirement is identifying the local-maxima direction from the medial map
derivatives. The search direction for local maxima is obtained from the structure tensor
of the ridge map, ST}, (R ). The eigenvector of greatest eigenvalue of the structure ten-
sor indicates the direction of highest variation of the ridge image. In order to overcome
small glitches due to discretization of the direction, NMS is computed using interpola-
tion along the search direction.

One drawback of the ridge operator is that anywhere the structure tensor does not
have a clear predominant direction, the creaseness response decreases. This may hap-
pen at points where two medial manifolds join and can introduce holes on the medial
surface that violate the homotopy principle. Such holes are exclusively localized at self-
intersections, and are removed by means of a closing operator.

3 Validation Experiments

As multiple algorithms generate different surfaces, we are interested in finding a way
to evaluate the quality of the generated manifold as a tool to recover the original shape.
We propose a benchmark for medial surface quality evaluation that starts from known
medial surfaces, that we consider as ground truth, and generates objects from them.
The medial surface obtained from the newly created object is then compared against
the ground truth surface. We have applied our NMS using 0 = 0.5, p = 1 for both
ST, (D) and ST, ,(R). In order to compare to morphological methods, we also
applied an ordered thinning using a 6-connected neighborhood (labeled Thin6C) de-
scribed in [3], a 26-connected neighborhood (labeled Thin26C) described in [13] and a
pruning of the 26-connected neighborhood (labeled Thin26CP).

The quality of medial surfaces has been assessed by comparing them to ground truth
surfaces in terms of surface distance [8]. The distance of a voxel y to a surface X is
given by: dx (y) = mingecx ||y — ||, for || - || the Euclidean norm. If we denote by X
the reference surface and Y the computed one, the scores considered are:

1. Standard Surface Distances:

1
AvD = 7 y%; dx (y) MazD = rynea))/((dx(y))

2. Symmetric Surface Distances:

1
AvSD = ——— dy (z) + dx(y
X | 2 @ gx“

MxSD = max (g@?<dy(w))’gl€a§((dx (y)))
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Fig. 1. Synthetic Volume examples. Each row corresponds to a compared method, while columns
exemplify the different objects families tested: one and two foil surfaces, with constant (1st and
3rd columns) or variable distance (2nd and 4th columns), and with holes (last column).

Standard distances measure deviation from medialness, while differences between
standard and symmetric distances indicate homotopy artifacts. Thinness has been visu-
ally assessed.

The ground truth medial surfaces cover 3 types: non-intersecting trivial homotopy
(denoted Simplel), intersecting trivial homotopy (denoted Simple2) and non-trivial
(homeomorphic to the circle) homotopy group (denoted Homotopy1). Thirty volumes
having the synthetic surfaces as medial manifolds have been generated by threshold-
ing the distance map to the synthetic surface. We have considered constant (denoted
UnifDist) and varying (denoted VarDist) thresholds.

Figure 1 shows an example of the synthetic volumes in the first row and results in the
remaining rows. The shape of surfaces produced using morphological thinning strongly
depends on the connectivity rule used. In the absence of pruning, surfaces, in addition,
have extra medial axes attached. On the contrary, NMS medial surfaces have a well
defined shape matching the original synthetic surface.

Table 1 reports error ranges for the four methods and the different types of syn-
thetic volumes. For all methods, there are not significant differences between standard
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and symmetric distances for a given volume. This indicates a good preservation of ho-
motopy. Thinning without pruning has significant geometric artifacts (maximum dis-
tances increase) and might drop its performance for variable distance volumes due to a
different ordering for pixel removal. The performance of NMS presents high stability
across volume geometries and produces accurate surfaces matching synthetic shapes.

These results show that our approach has better reconstruction power.

Table 1. Error ranges for the Synthetic Volumes

Simplel

Simple2

Homotopy1l

UnifDist

VarDist

UnifDist

VarDist

NMS

AvD

0.218 £ 0.034

0.245 £ 0.052

0.279 £ 0.103

0.270 £ 0.058

0.175 £ 0.085

MxD

2.608 4= 0.660

2.676 £ 2.001

3.000 = 0.000

3.000 = 0.000

2.873 £0.229

AvSD

0.209 £ 0.059

0.250 £ 0.075

0.243 £ 0.085

0.273 £ 0.053

0.171 £ 0.045

MxSD

2.745 £ 0.394

2.813 £1.924

2.873 £ 0.312

3.281 £ 0.562

2.873 £0.229

Thin6C

AvD

1.853 £ 0.237

6.523 + 0.162

1.843 £ 0.266

3.128 £ 0.860

2.801 £ 0.661

MxD

6.946 £ 1.377

23.293 £ 1.869

7.995 £ 1.052

12.868 4= 1.598

9.749 £ 0.718

AvSD

1.582 £0.188

5.922 £0.195

1.897 + 0.674

2.695 + 0.805

2.451 £ 0.645

MxSD

6.946 £ 1.377

23.293 £+ 1.869

8.926 £+ 1.730

12.868 + 1.598

9.749 £ 0.718

Thin26C

AvD

1.466 £ 0.102

5.523 £ 0.341

1.527 £ 0.187

2.679 +£0.472

2.610 £0.735

MxD

6.918 + 1.537

21.807 £2.477

7.973 £ 1.256

12.702 £ 1.697

9.519 £ 0.810

AvSD

1.226 +£0.124

4.868 £ 0.349

1.222 £ 0.153

2.251 £ 0.450

2.282 +0.717

MxSD

6.918 £ 1.537

21.807 £2.477

7.973 £ 1.256

12.702 £ 1.697

9.519 £ 0.810

Thin26CP

AvD

0.771 £0.110

0.686 £ 0.135

0.755 £ 0.118

0.865 £ 0.150

0.748 £ 0.064

MxD

2.544 £0.797

2.440 £ 0.676

2.864 + 0.632

7.220 + 3.239

2.782 £0.254

AvSD

0.664 £ 0.158

0.566 = 0.184

1.039 £ 0.695

0.961 £ 0.384

0.567 £ 0.048

MxSD

2.544 £ 0.797

2.676 £0.779

5.289 £ 3.291

9.860 + 3.962

2.782 £ 0.254

4 Application to Abdominal Organs

Our method was applied to sets of manually segmented livers selected from a public
database! of CT volumes [8]. CT images were acquired with scanners from different
manufacturers (4, 16 and 64 detector rows), a pixel spacing between 0.55 and 0.80mm
and inter-slice distance from 1 to 3mm. Figure 2 shows medial surfaces for two livers.
The extracted medial surfaces show the robustness of our approach. The images in the
bottom row show a liver with a remarkably prominent right lobe in its superior aspect,
which is captured by our medial representation.

Our next experiment focuses on the representation of multi-organ datasets [14]. Ini-
tial results on the medial representation of multiple abdominal organs are shown in
Fig. 3. It can be observed that medial representations of neighboring organs contain
information about shape and topology that can be exploited for the description of organ
shape and configuration.

! Collected from sliver07 competition hosted at MICCAIO7 and available at sliver07.isi.uu.nl.
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Fig. 3. Abdominal set of organs and surfaces: liver (red), kidneys (blue), pancreas (yellow), spleen
(purple), and stomach (green).

5 Conclusions and Discussion

Medial manifolds are powerful descriptors of anatomical shapes. The method presented
in this paper overcomes the limitations of existing morphological methods: it extracts
medial surfaces without medial axis segments, and the binarization scales well with
increasing dimension. Additionally, we have presented a quantitative comparison study
to evaluate the performance of medial surface calculation methods and calculate their
deviation from an ideal medial surface. Finally, we have shown the performance of our
method for the analysis of multiple abdominal organs.

Future work includes the use of the medial surfaces computed using our methods
as basis for shape parameterization [20], in order to construct anatomy-based reference
systems for implicit registration and localization of pathologies. Further, we will ex-
plore correspondences between medial representations of neighboring organs to define
inter-organ relations in a more exhaustive way than simply using centroid and pose
parameters [10,11,19].
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