toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Naveen Onkarappa; Angel Sappa edit  doi
isbn  openurl
  Title (down) On-Board Monocular Vision System Pose Estimation through a Dense Optical Flow Type Conference Article
  Year 2010 Publication 7th International Conference on Image Analysis and Recognition Abbreviated Journal  
  Volume 6111 Issue Pages 230-239  
  Keywords  
  Abstract This paper presents a robust technique for estimating on-board monocular vision system pose. The proposed approach is based on a dense optical flow that is robust against shadows, reflections and illumination changes. A RANSAC based scheme is used to cope with the outliers in the optical flow. The proposed technique is intended to be used in driver assistance systems for applications such as obstacle or pedestrian detection. Experimental results on different scenarios, both from synthetic and real sequences, shows usefulness of the proposed approach.  
  Address Povoa de Varzim (Portugal)  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13771-6 Medium  
  Area Expedition Conference ICIAR  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ OnS2010 Serial 1342  
Permanent link to this record
 

 
Author Felipe Codevilla; Antonio Lopez; Vladlen Koltun; Alexey Dosovitskiy edit   pdf
url  openurl
  Title (down) On Offline Evaluation of Vision-based Driving Models Type Conference Article
  Year 2018 Publication 15th European Conference on Computer Vision Abbreviated Journal  
  Volume 11219 Issue Pages 246-262  
  Keywords Autonomous driving; deep learning  
  Abstract Autonomous driving models should ideally be evaluated by deploying
them on a fleet of physical vehicles in the real world. Unfortunately, this approach is not practical for the vast majority of researchers. An attractive alternative is to evaluate models offline, on a pre-collected validation dataset with ground truth annotation. In this paper, we investigate the relation between various online and offline metrics for evaluation of autonomous driving models. We find that offline prediction error is not necessarily correlated with driving quality, and two models with identical prediction error can differ dramatically in their driving performance. We show that the correlation of offline evaluation with driving quality can be significantly improved by selecting an appropriate validation dataset and
suitable offline metrics.
 
  Address Munich; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCV  
  Notes ADAS; 600.124; 600.118 Approved no  
  Call Number Admin @ si @ CLK2018 Serial 3162  
Permanent link to this record
 

 
Author Andrew Nolan; Daniel Serrano; Aura Hernandez-Sabate; Daniel Ponsa; Antonio Lopez edit   pdf
openurl 
  Title (down) Obstacle mapping module for quadrotors on outdoor Search and Rescue operations Type Conference Article
  Year 2013 Publication International Micro Air Vehicle Conference and Flight Competition Abbreviated Journal  
  Volume Issue Pages  
  Keywords UAV  
  Abstract Obstacle avoidance remains a challenging task for Micro Aerial Vehicles (MAV), due to their limited payload capacity to carry advanced sensors. Unlike larger vehicles, MAV can only carry light weight sensors, for instance a camera, which is our main assumption in this work. We explore passive monocular depth estimation and propose a novel method Position Aided Depth Estimation
(PADE). We analyse PADE performance and compare it against the extensively used Time To Collision (TTC). We evaluate the accuracy, robustness to noise and speed of three Optical Flow (OF) techniques, combined with both depth estimation methods. Our results show PADE is more accurate than TTC at depths between 0-12 meters and is less sensitive to noise. Our findings highlight the potential application of PADE for MAV to perform safe autonomous navigation in
unknown and unstructured environments.
 
  Address Toulouse; France; September 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IMAV  
  Notes ADAS; 600.054; 600.057;IAM Approved no  
  Call Number Admin @ si @ NSH2013 Serial 2371  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Antonio Lopez edit   pdf
openurl 
  Title (down) Novel Index for Objective Evaluation of Road Detection Algorithms Type Conference Article
  Year 2008 Publication Intelligent Transportation Systems. 11th International IEEE Conference on, Abbreviated Journal  
  Volume Issue Pages 815–820  
  Keywords road detection  
  Abstract  
  Address Beijing (Xina)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ITSC  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ AlL2008 Serial 1074  
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa edit  doi
isbn  openurl
  Title (down) Non-Rigid Shape Registration: A Single Linear Least Squares Framework Type Conference Article
  Year 2012 Publication 12th European Conference on Computer Vision Abbreviated Journal  
  Volume 7578 Issue Pages 264-277  
  Keywords  
  Abstract This paper proposes a non-rigid registration formulation capturing both global and local deformations in a single framework. This formulation is based on a quadratic estimation of the registration distance together with a quadratic regularization term. Hence, the optimal transformation parameters are easily obtained by solving a liner system of equations, which guarantee a fast convergence. Experimental results with challenging 2D and 3D shapes are presented to show the validity of the proposed framework. Furthermore, comparisons with the most relevant approaches are provided.  
  Address Florencia  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-33785-7 Medium  
  Area Expedition Conference ECCV  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RoS2012a Serial 2158  
Permanent link to this record
 

 
Author Mohammad Rouhani; E. Boyer; Angel Sappa edit   pdf
doi  openurl
  Title (down) Non-Rigid Registration meets Surface Reconstruction Type Conference Article
  Year 2014 Publication International Conference on 3D Vision Abbreviated Journal  
  Volume Issue Pages 617-624  
  Keywords  
  Abstract Non rigid registration is an important task in computer vision with many applications in shape and motion modeling. A fundamental step of the registration is the data association between the source and the target sets. Such association proves difficult in practice, due to the discrete nature of the information and its corruption by various types of noise, e.g. outliers and missing data. In this paper we investigate the benefit of the implicit representations for the non-rigid registration of 3D point clouds. First, the target points are described with small quadratic patches that are blended through partition of unity weighting. Then, the discrete association between the source and the target can be replaced by a continuous distance field induced by the interface. By combining this distance field with a proper deformation term, the registration energy can be expressed in a linear least square form that is easy and fast to solve. This significantly eases the registration by avoiding direct association between points. Moreover, a hierarchical approach can be easily implemented by employing coarse-to-fine representations. Experimental results are provided for point clouds from multi-view data sets. The qualitative and quantitative comparisons show the outperformance and robustness of our framework. %in presence of noise and outliers.  
  Address Tokyo; Japan; December 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 3DV  
  Notes ADAS; 600.055; 600.076 Approved no  
  Call Number Admin @ si @ RBS2014 Serial 2534  
Permanent link to this record
 

 
Author Antonio Lopez; J. Hilgenstock; A. Busse; Ramon Baldrich; Felipe Lumbreras; Joan Serrat edit   pdf
openurl 
  Title (down) Nightime Vehicle Detecion for Intelligent Headlight Control Type Conference Article
  Year 2008 Publication Advanced Concepts for Intelligent Vision Systems, 10th International Conference, Proceedings, Abbreviated Journal  
  Volume 5259 Issue Pages 113–124  
  Keywords Intelligent Headlights; vehicle detection  
  Abstract  
  Address Juan-les-Pins, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ACIVS  
  Notes ADAS;CIC Approved no  
  Call Number ADAS @ adas @ LHB2008a Serial 1098  
Permanent link to this record
 

 
Author Ferran Diego; G.D. Evangelidis; Joan Serrat edit   pdf
url  openurl
  Title (down) Night-time outdoor surveillance by mobile cameras Type Conference Article
  Year 2012 Publication 1st International Conference on Pattern Recognition Applications and Methods Abbreviated Journal  
  Volume 2 Issue Pages 365-371  
  Keywords  
  Abstract This paper addresses the problem of video surveillance by mobile cameras. We present a method that allows online change detection in night-time outdoor surveillance. Because of the camera movement, background frames are not available and must be “localized” in former sequences and registered with the current frames. To this end, we propose a Frame Localization And Registration (FLAR) approach that solves the problem efficiently. Frames of former sequences define a database which is queried by current frames in turn. To quickly retrieve nearest neighbors, database is indexed through a visual dictionary method based on the SURF descriptor. Furthermore, the frame localization is benefited by a temporal filter that exploits the temporal coherence of videos. Next, the recently proposed ECC alignment scheme is used to spatially register the synchronized frames. Finally, change detection methods apply to aligned frames in order to mark suspicious areas. Experiments with real night sequences recorded by in-vehicle cameras demonstrate the performance of the proposed method and verify its efficiency and effectiveness against other methods.  
  Address Algarve, Portugal  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRAM  
  Notes ADAS Approved no  
  Call Number Admin @ si @ DES2012 Serial 2035  
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate; Gabriel Villalonga; Jiaolong Xu; David Vazquez; Jaume Amores; Antonio Lopez edit   pdf
url  doi
openurl 
  Title (down) Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection Type Conference Article
  Year 2015 Publication IEEE Intelligent Vehicles Symposium IV2015 Abbreviated Journal  
  Volume Issue Pages 356-361  
  Keywords Pedestrian Detection  
  Abstract Despite recent significant advances, pedestrian detection continues to be an extremely challenging problem in real scenarios. In order to develop a detector that successfully operates under these conditions, it becomes critical to leverage upon multiple cues, multiple imaging modalities and a strong multi-view classifier that accounts for different pedestrian views and poses. In this paper we provide an extensive evaluation that gives insight into how each of these aspects (multi-cue, multimodality and strong multi-view classifier) affect performance both individually and when integrated together. In the multimodality component we explore the fusion of RGB and depth maps obtained by high-definition LIDAR, a type of modality that is only recently starting to receive attention. As our analysis reveals, although all the aforementioned aspects significantly help in improving the performance, the fusion of visible spectrum and depth information allows to boost the accuracy by a much larger margin. The resulting detector not only ranks among the top best performers in the challenging KITTI benchmark, but it is built upon very simple blocks that are easy to implement and computationally efficient. These simple blocks can be easily replaced with more sophisticated ones recently proposed, such as the use of convolutional neural networks for feature representation, to further improve the accuracy.  
  Address Seoul; Corea; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area ACDC Expedition Conference IV  
  Notes ADAS; 600.076; 600.057; 600.054 Approved no  
  Call Number ADAS @ adas @ GVX2015 Serial 2625  
Permanent link to this record
 

 
Author Monica Piñol; Angel Sappa; Ricardo Toledo edit   pdf
doi  isbn
openurl 
  Title (down) MultiTable Reinforcement for Visual Object Recognition Type Conference Article
  Year 2012 Publication 4th International Conference on Signal and Image Processing Abbreviated Journal  
  Volume 221 Issue Pages 469-480  
  Keywords  
  Abstract This paper presents a bag of feature based method for visual object recognition. Our contribution is focussed on the selection of the best feature descriptor. It is implemented by using a novel multi-table reinforcement learning method that selects among five of classical descriptors (i.e., Spin, SIFT, SURF, C-SIFT and PHOW) the one that best describes each image. Experimental results and comparisons are provided showing the improvements achieved with the proposed approach.  
  Address Coimbatore, India  
  Corporate Author Thesis  
  Publisher Springer India Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 1876-1100 ISBN 978-81-322-0996-6 Medium  
  Area Expedition Conference ICSIP  
  Notes ADAS Approved no  
  Call Number Admin @ si @ PST2012 Serial 2157  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: