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Abstract: This paper addresses the problem of video surveillance by mobile cameras. We present a method that allows
online change detection in night–time outdoor surveillance. Because of the camera movement,background
frames are not available and must be ”localized“ in former sequencesand registered with the current frames.
To this end, we propose a Frame Localization And Registration (FLAR) approach that solves the problem
efficiently. Frames of former sequences define a database which is queried by current frames in turn. To
quickly retrieve nearest neighbors, database is indexed through a visual dictionary method based on the SURF
descriptor. Furthermore, the frame localization is benefited by a temporal filter that exploits the temporal
coherence of videos. Next, the recently proposed ECC alignment scheme is used to spatially register the
synchronized frames. Finally, change detection methods apply to alignedframes in order to mark suspicious
areas. Experiments with real night sequences recorded by in-vehiclecameras demonstrate the performance of
the proposed method and verify its efficiency and effectiveness against other methods.

1 INTRODUCTION

In recent years, visual–surveillance systems based
on video processing and understanding techniques
have attracted increasing interest from urban and
building security, military related field and security
and video patrolling systems. The principal aim of
such systems is to detect potential suspicious items
or sings of intrusion, and consequently generate a
warning–sign to a human operator. This detection
mainly consists of identifying changes between im-
ages of the same scene but temporally separated.
Most change detection methods proposed in the lit-
erature deal with stationary cameras as surveyed
in (Radke et al., 2005). This amounts to detect dif-
ferences using a stationary background. Such ap-
proaches reflect minor applicability for wide areas
where multiple cameras are required. This drawback
can be overcome using a mobile camera to scan these
places, but the problem becomes more challenging
due to the non-stationary background and varying am-
bient illumination.

The latter scenario is what we consider in this pa-
per. Specifically, we present a method that helps the
video analyst to robustly detect potential and suspi-
cious sings of intrusion by vehicles that repeatedly
patrol sensitive areas and private buildings at night–
time. This detection cannot rely on specific classifiers
mainly due to the following factors: (1) the quality of
the acquired images can be significantly degraded at
night–time and (2) these signs may be both random

anomalies, such as an intruder, and stationary anoma-
lies, e.g. a suspicious suitcase, with arbitrary shapes,
color or texture. To this end, we propose an efficient
and effective framework to detect potential anomalies
exploiting the similarities occurred when one vehi-
cle repeatedly patrols the same ride. This consists of
comparing a pair of video sequences recorded by a
forward–facing camera attached to the windscreen of
the vehicle whose view is what the driver sees. Hence,
sings of intrusion or missing objects occurred in the
interim between successive rounds can be detected by
a background subtraction approach. However, this
obviously requires the spatio–temporal alignment of
the current sequence with the one captured during the
previous round, i.e. the video synchronization and the
spatial registration of corresponding frames.

Current video synchronization algorithms esti-
mate the temporal relation between two sequences
once they have been acquired. However, our goal is
to online detect changes at a reasonable rate. Thus,
instead of synchronizing the whole sequences solving
an offline global optimization problem, the proposed
framework counts on a Frame Localization And Reg-
istration (FLAR) scheme. In short, given each newly
acquired frame during the current ride, wetempo-
rally localize it against thebackground sequenceof
the previous ride. This aims in other words at assign-
ing each current frame to a background frame so that
their viewpoints ideally are the closest ones. Since ef-
ficiency is of major importance in online solutions,
the extraction of the corresponding frame relies on



an image retrieval scheme based on the SURF de-
scriptor (Bay et al., 2008). A temporal filter applies
to the outcome of the retrieval task in order to han-
dle false positives (outliers). Then, we have to spa-
tially register the corresponding frames into the same
image–coordinate system. As the video acquisition
takes place at different times, the appearance of corre-
sponding frames varies. To cope with such variations,
we adopt the recently proposed ECC image alignment
scheme (Evangelidis and Psarakis, 2008) that offers
the desired robustness. As a final step, different met-
rics that count on image differences are applied to de-
tect changes and mark areas of interest. The contribu-
tion of this paper is summarized as follows:

• A challenging case for outdoor surveillance by
mobile cameras during the night is investigated.

• The proposed FLAR scheme reflects a solution for
online surveillance instead of postprocessing after
the acquisition of both sequences.

• It incorporates efficient tasks that allows us to en-
vision a real-time execution in GPU-based eviron-
ment.

• The desired invariance to the motion style of
surveillance vehicle (speed, acceleration, back-
ward motion etc) is fulfilled.

1.1 Related Work

The challenging problem of detecting changes be-
tween videos acquired by mobile cameras at different
times is considerably less tackled than the case of sta-
tionary cameras (Radke et al., 2005). Marcenaroet
al. (Marcenaro et al., 2002) proposed an outdoor–
surveillance based on fixed and pan/tilt mobile cam-
eras. In this case, the mobile camera allows to exceed
the limitations of the fixed camera that monitors the
entire scene. When the position of the mobile camera
is unknown, the system fails to detect changes since it
needs to know the corresponding background image.
Primdahlet al. (Primdahl et al., 2005) presented a
method that analyzes videos for an automatic naviga-
tion of cameras in a specific, well–defined corridor.
Sand and Teller (Sand and Teller, 2004) proposed a
video matching scheme for two sequences recorded
by moving cameras following nearly identical trajec-
tories. Although it allows figures to be compared
pixel–wise and detects differences, the key limitation
of this algorithm is the computational time of com-
puting a robust image–alignment for several possible
pairs of corresponding frames. To make it efficient,
Kong et al. (Kong et al., 2010) temporally aligned
the two sequences using GPS data only and detect
abandoned suspicious objects via inter–sequence ho-

mographies whereas temporal filtering was enabled
to handle false alarms. In contrast, Soibanet al.
(Soibam et al., 2009) and Haberdar and Shah (Haber-
dar, 2010) found manually the visually closest match-
ing frame in the first video for each observed frame
of the second one. Finally, Diegoet al. (?) proposed
a video alignment framework based on fusing image–
based and GPS observations to spot differences be-
tween sequences taken at different times and by inde-
pendently moving cameras, while Chakravartyet al.
(Chakravarty et al., ) presented a mobile robot capable
of repeating a manually trained route that detect any
visual anomalies using stereo–based algorithm; these
anomalies are subsequently tracked using a particle
filter.

The rest of this paper is organized as follows: Sec-
tion 2 describes the whole framework and specifically,
subsection 2.1 presents the frame localization ap-
proach accompanied by a temporal filtering method,
while the spatial registration and the change detection
tasks are discussed in subsections 2.2 and 2.3 respec-
tively. Experiments to validate the proposed algo-
rithm are presented in Section 3 and results are dis-
cussed. Finally, in Section 4, the main conclusions
are drawn.

2 FRAME LOCALIZATION
AND REGISTRATION

Suppose we are given two video sequences rep-
resented asI r = {I r

m(x̂)}
M
m=1 and I c = {Ic

n(x)}
N
n=1,

being M,N their number of frames and̂x = [x̂, ŷ]t ,
x = [x,y]t their spatial coordinates respectively. The
former, or reference sequence, denotes the sequence
taken in a previous ride (background sequence),
whereas the latter, or current sequence, is the one be-
ing recorded in the current ride following a similar
trajectory. Then, the anomalies occurred in the mean-
while between successive rounds can be detected by
matching and comparing the current with the refer-
ence sequence. That is, thresholding properly a dif-
ference image sequence between spatio-temporally
aligned sequences allows the detection of missing ob-
jects or suspicious sings of intrusion.

To solve the above defined problem we propose a
Frame Localization And Registration (FLAR) frame-
work that is shown in Figure 1. Within this frame-
work, the only assumption we make is that the vehi-
cles follow a similar, approximately coincident, route.
Intitally, the most likely frame of a previous ride is
extracted for each newly acquired frame in the cur-
rent ride (localization step). When the sequences
are recorded by on–board cameras in moving vehi-



Figure 1: FLAR system for video surveillance with mobile cameras.

cles, this implies a challenging task because of the in-
dependently moving cameras and the non-coincident
trajectories. As a result, the speed and the position of
the cameras vary, while the ambient illumination can
be different.

A few different video alignment approaches (Sand
and Teller, 2004; Liu et al., 2008; Diego et al., 2010)
could be adjusted to our problem. However, none
of them is able to estimate the frame correspondence
during the acquisition of the current sequence due to
their high computational cost. Therefore, we propose
an efficient on–line video synchronization algorithm
that relies on an image retrieval scheme based on the
SURF descriptor (Bay et al., 2008) and a temporal
filter. This essentially assigns thenth current frame to
the reference indextn with tn ∈ [1,M], thereby provid-
ing the desired invariance to the motion style of cam-
eras. Once the correspondence pair(n, tn) has been
found, the dense alignment of the assigned frames is
required (registration step) in order to compare them
pixel–wise. This kind of comparison is necessary for
our endmost goal, that is, the identification of regions
that changed in the interim between the records. Now
that the solution is roughly formulated, we proceed
with the discussion about the details of each step of

the proposed framework.

2.1 Image–retrieval scheme

The image–retrieval scheme based on SURF descrip-
tors (Bay et al., 2008) aims to evaluate efficiently a
confidence matrix that measures the similarity of a
current frame with all frames in the background, thus
allowing the association of the current frame to the
most similar reference frame. Our implementation re-
sembles (Sivic and Zisserman, 2009) but disabling the
vector quantization step and using only the inverted
file. In short, we initially enable the SURF algorithm
to localize keypoints in all the background frames and
describe the area around them. A visual dictionary is
then learned together with building an inverted index
list as shown in Fig. 1. Notice that all this implies an
offline task since can be done without having the cur-
rent sequences at our disposal. Given now a current
frame of the new ride, we extract its SURF descrip-
tors and look for their closest visual word, thus voting
for the assigned reference frames. In order to ignore
very frequent visual words that are assigned to many
reference frames, we enable the inverse–document–
frequency (IDF) weighting scheme (Sivic and Zisser-



man, 2009). Fig. 2 shows an example of the confi-
dence matrix together with two retrieval examples.

Figure 2: The confidence matrix captures the similarity be-
tween current and background frames; two retrieval exam-
ples (top frames) are also shown for two queries (bottom
frames).

2.1.1 TEMPORAL FILTERING

The above retrieval system provides us with a con-
fidence matrix. To extract the time mapping result,
for each observed frame one could simply choose the
reference index with the maximum confidence value.
However, it might return an erroneous synchroniza-
tion signal with sharp changes due to isolated points.
To avoid sharp transitions, we choose for any query
frame the maximum reference index subject to the
constraint that lies in a tolerance interval. The lat-
ter is defined around the reference index assigned to
the previous query frame. By recalling thattn is the
correspondence of thenth, [tn−10, tn+10] is the tol-
erance interval of the(n+1)th current frame for our
experiments.

It is obvious that the above smoothness operation
rejects only very high frequencies in the time map-
ping signal. In order to obtain a smoother signal, we
propose the use of a filter that applies in the signal
tn. Specifically, such a filter can be described by the
standarddifference equation(Lathi, 1998)

Tn =
K

∑
i=0

bitn−
L

∑
j=1

a jTn− j (1)

whereTn defines its output. In general, it con-
stitutes an Infinite Impulse Response (IIR) filter, but
whena j = 0, it turns into a Finite Impulse Response
(FIR) filter of orderK (Lathi, 1998). It is important
to note that this filter is a causal system and the cur-
rent output depends only on previous input and output
values, being capable for online and real-time solu-
tions. Both type of filters were tested usingK = L= 3,
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Figure 3: Left: Frequency response of the (top) FIR and
(bottom) IIR filter.Right: The DFT of the input, the outputs
and the ground signal (video rate: 25fps).

b0 = 0.4, b1 = 0.3, b2 = 0.2, b3 = 0.1 anda1 = 4,
a2 = −2, a3 = −1. In either case, these values of
coefficients establish a lowpass filter. IIR provides
smoother results because of its higher, theoretically
infinite, order. On the other hand, FIR deals better
with peaks (outliers) due to its finite order. The fre-
quency response of the filters and the DFT1 magni-
tude of the output signals are shown in Figure 3. The
input is the time mapping sequence resulted when the
proposed method applies to a real nighttime sequence.
The ground smooth signal obtained by postprocessing
(curve fitting given all input values) is given for com-
parison. Although both filters behave similarly in low
frequencies, IIR output is more close to the ground
signal in high frequency band.

2.2 SPATIAL ALIGNMENT

In order to obtain accurate alignment between a ref-
erence frameI r(x̂) and the current observed frame
Ic(x), we propose the use of a recently introduced
algorithm that is called ECC algorithm (Evangelidis
and Psarakis, 2008). This scheme seems to be ro-
bust in noise while at the same time is insensitive
to global illumination changes. The algorithm uses
an enhanced version of the correlation coefficient as
an objective function and the goal is its maximization
through an iterative scheme.

Let us suppose that the warpW(x;p) is a 2D map-
ping based on the standard homography model with
eight parameters (Szeliski, 2010), i.e.x̂ = W(x;p),
that provides dense correspondences. Then, ECC al-
gorithm tries to estimate the warp so that the observed

1Discrete Fourier Transform (Lathi, 1998)



and the warped reference images are similar. In other
words, it solves the following maximization problem

max
p

ict ir(p)
‖ic‖‖ir(p)‖

. (2)

whereic andir(p) are the zero-mean vectorized forms
of imagesIc(x) and I r(W(x;p)) respectively. Since
the above maximization problem is highly non-linear,
the solution of a sequence of secondary problems that
follow a closed form solution is proposed in (Evan-
gelidis and Psarakis, 2008). By considering the up-
date rulep = p0+∆p, the vectorir(p) can be approx-
imated byir(p) ≃ ir(p0) + J∆p using the first-order
Taylor expansion formula, where J is the Jacobian of
ir(p) with respect top evaluated atp0 (see (Evange-
lidis and Psarakis, 2008) for details). Although af-
ter linearization the objective function remains non-
linear in∆p, it has been proved that the optimum cor-
rection vector obeys the following closed form solu-
tion

∆p = (JtJ)−1Jt {λīo− īr(p̃)
}

, (3)

with λ being

λ =
ītp̃PJ̄ip̃
itqPJip̃

, (4)

where PJ = I − J(JtJ)−1Jt is an orthogonal projection
operator and I the identity matrix. Finally, by itera-
tively following the above parameter update rule, we
can obtain an acceptable solution by setting a stop-
ping criterion or fixing the number of iterations. Note
that the complexity of this scheme isO(NpN2

i ) per it-
eration, whereNp is the number of parameters andNp
is the number of pixels

2.3 CHANGE DETECTION

Although we present a video surveillance algorithm,
we do not focus on change detection since this subject
has been extensively studied. A nice survey for image
detection algorithms can be found in (Radke et al.,
2005). Hence, since FLAR provides the correspond-
ing background frame appropriately warped, we use
typical methods to detect changes between current
and warped reference images. Specifically, we use the
Simple Differencing (SD) method by thresholding the
image differences, a Mimimum Description Length
(MDL) model to classify changed and unchanged re-
gions and a statistical method that considers a Gaus-
sian model for the noise (GN) (for details see (Radke
et al., 2005)). All these methods return a binary image
(mask) at which we apply trivial morphological oper-
ations in order to locate bounding boxes in the image
of interest.

3 EXPERIMENTAL RESULTS

In this section, we present qualitative and quan-
titative results to validate the proposed approach.
Specifically, we compare the performance of differ-
ent counterparts of the proposed algorithm with that
of the most related works (Diego et al., 2010; Liu
et al., 2008; Yang et al., 2007). The evaluation
counts on experimenting with six real video sequence
pairs recorded by in-vehicle cameras, whose trajecto-
ries are approximately coincident. Although we aim
at registering nighttime sequences, we consider es-
sential to also test the algorithms with daylight se-
quences. To this end, we used three sequences of each
class denoted asNight1, Night2 and Night3 (Kong
et al., 2010), and asDay1, Day2 and Day3 (Serrat
et al., 2007) respectively. The alignment of these se-
quences implies a quite challenging task, since the
speed of vehicles varies. The average length of night
sequences is 2500 frames and the spatial resolution
is 720× 540 pixels, whereas daylight sequences are
shorter in both space and time (200 frames of size
512×384 pixels).

3.1 Synchronization Evaluation

In this section, we evaluate the performance of tem-
porally localize each newly acquired frame during
the current ride against the background sequence of
the previous ride. To properly assess the quality of
the results, we have manually annotated the ground–
truth for these datasets,i.e. a narrow reference inter-
vals [ln,un] that each current frame must correspond
to, since it is hard to decide the precise correspond-
ing frame visually; the length of these intervals is 3
frames on average. Similar to (Diego et al., 2010),
the synchronization error for a candidate pair(n, tn) is
defined as

err(tn)=

{

0 if ln ≤ tn ≤ un
min(|ln−tn|, |un−tn|) otherwise

(5)
The performance of synchronization is quantified
through the percentage 1− ∑N

i (err(tn) > ε)/N for
ε = 0,1.

In the context of synchronization, we could ob-
viously obtain the temporal matches by exhaustively
trying to spatially register each possible pair of frames
(one from each sequence) that is clearly not feasi-
ble due to its computational cost for background se-
quences longer than a few seconds at a frame rate of
25–30 frames per second. Thus, the temporal matches
could be efficiently obtained by retrieving a short-list
(i.e. top-10 ) of background frames by the image–
appearance model proposed in (Diego et al., 2010).



Then, a spatial coherence step using ECC algorithm
re-ranks the list w.r.t. the correlation coefficient, thus
emerging the closest frame. In the context of retrieval,
we also try our scheme by only changing the SURF
descriptor with the SIFT one (Lowe, 2004).

Table. 1 shows the synchronization performance
achieved by these three methods. We provide results
for ε = 0 andε = 1 to show the error variance. From
the results, we can see that SURF–based method
achieves higher synchronization scores than the two
other methods across all sequences. It is important to
note that the Frame Localization (FL) based on SURF
or SIFT descriptors accurately discriminates the back-
ground frame by just retrieving the best neighbor.
IIR filter provides slightly better scores with both de-
scriptors. However, the contribution of SURF de-
scriptor instead of SIFT is clearly evident especially
for night–time sequences. Specifically, SURF–FL
(SURF–based FL) remarkably increases the perfor-
mance of SIFT–FL (SIFT–based FL) by 6% on av-
erage while the proposed scheme achieves a 8% bet-
ter score than that of the exhaustive method. Note
that this comparison does not favor our method in the
sense that our method does not count on geometric
constraints, since we aim at investigating the perfor-
mance of the net algorithm. However, it is obvious
that SURF–FL scheme would be benefitted by such
constraints.

By putting aside the exhaustive search method,
SURF-FL is more efficient than its SIFT counterpart,
since SURF algorithm uses integral images to extract
the descriptors. Specifically, given a frame of the
nighttime sequences, the extraction of SURF descrip-
tors requires 100 msec, while SIFT algorithm takes
more than 1 sec. Moreover, the computational cost
of the retrieval part is less for SURF–FL scheme be-
cause of the shorter descriptor (64 against 128). In
practice, the retrieval time using SURF-FL was 0.88
sec, whileSIFT required 2.8 sec per frame. The ex-
haustive method leads to a heavy task since FL takes
more than 3 minutes per query. It is very important to
note that the whole system is implemented in Matlab
(not optimized code), but the the original executable
files for SURF and SIFT algorithms are used for ex-
tracting descriptors.

3.2 ALIGNMENT AND DETECTION
ASSESSMENT

Due to real nature of data, we run a qualitative com-
parison between the investigated schemes. Since the
detection of changes relies on the quality of regis-
tration, we present both alignment and detection in-
stances to a more complete comparison. To assess

the alignment, we use a fusion representation, where
theG channel of the current frame has been replaced
by the warpedG channel of the background corre-
sponding frame in anRGBrepresentation. This way,
changes are marked by green and pink colors.

In Fig. 4 the corresponding frames obtained by the
synchronization methods are shown for various night
frames including challenging cases (please view the
figure in your screen for details). Given the results
of the proposed method (Fig. 4 (bottom)), Fig. 5
presents alignment instances obtained by the SIFT-
flow algorithm, the Generalized Dual-Bootstrap ver-
sion of the ICP algorithm (Yang et al., 2007) (GDB-
ICP) and the ECC scheme. Note that the goal of SIFT-
flow is a pixel–wise alignment instead of estimating
a global geometric transformation as ECC and GDB-
ICP do. Note also that GDB-ICP deals well with chal-
lenging cases like these in question.

All algorithms behave quite well in the absence
of occlusions. As we can see, however, when the
scene contains objects visible only in the one se-
quence, SIFT-flow fails as it creates artifacts or disap-
pears objects. This is probably because it works in a
flow (local) basis. On the other hand, ECC and GDB-
ICP achieve remarkable results despite the noise and
the low information content, with GDB-ICP provid-
ing local misalignments in some of two of the de-
picted frames. Since we are interested in efficiently
registering the images, the execution time is of ma-
jor importance. All algorithms work on half-size im-
ages. SIFT-flow requires 29.2 sec/frame, thus setting
itself inappropriate for real-time applications. As far
as the GDB-ICP scheme is concerned, we must note
that the time execution varies with the difficulty level
of registration. In our experiments, its average regis-
tration time was 42.2 sec/frame, while ECC required
1.7 sec/frame (15 iterations were enough). The ECC
algorithm was implemented with OpenCV library,
whereas for the others their original executable files
were used. As a consequence, given the total average
time required for the proposed scheme (FLAR+ECC),
we can envision a real-time execution in specific en-
vironments (i.e. GPU-based). Notice that the time
of ECC can be easily reduced by initializing the ho-
mography using feature matching or using only pixels
around keypoints (now all image pixels are taken into
account).

Although our primary goal is the spatio-temporal
matching, we also present results of some change de-
tection methods. As we mentioned in Sec. 2.3, we
enabled the SD method as well as the more sophis-
ticated MDL and GN models. Detection results are
shown in Fig. 6. Instead of presenting binary masks,
we use bounding boxes superimposed in query frames



Synchronization scores (ε = 0\ε = 1)
Night1 Night2 Night3 Day1 Day2 Day3 Average

Exhaustive search 71.5\84.5 61.4\78.8 68.9\83.8 − 93.2\98.6 85.0\99.3 76.0\89.0

SIFT–FL
FIR 67.5\82.9 48.7\68.6 66.9\83.1 70.0\85.0 99.3\100 92.5\96.6 74.2\86.0
IIR 71.8\86.7 52.2\70.7 77.1\88.8 74.0\93.5 100\100 95.2\100 78.4\90.0

SURF–FL
FIR 72.6\86.3 53.4\71 73.6\87.4 74.0\90.5 99.3\100 88.4\95.2 76.9\88.4
IIR 78.8\90.6 60.6\76.6 82.6\92.8 96.5\99.5 100\100 100\100 86.4\93.3

Table 1: Synchronization scores (%) obtained by the proposed methodsand the competitors for two values of error tolerance
ε. Symbol ”–“ means that the exhaustive method totally fails forDay1due to repeated patterns in frames.

Figure 4: (First row) Query (current) frames ofNight1 sequence and synchronization results obtained by (second row) ex-
haustive search, (third row) SIFT-based retrieval and (fourth row) SURF-based retrieval.

to annotate detected changes. An ”empty” bounding
box means that something is missing compared to the
background frame (see also the bottom row of Fig. 4).
Otherwise, it may be due to local misalignment, dif-
ferent illumination and reflectance, shading etc. We
observed that GN method provides slightly better re-
sult than MDL and SD methods. We must point out
here that, normally, errors in alignment and detection
do not happen in successive frames but randomly (see
supplemental material). This is helpful for the video
analyst who can ignore instant changes. The time re-
quired by SD method is meaningless. The complexity
of the MDL and GN method is slightly higher, but not
prohibitive for real–time applications.

4 CONCLUSIONS AND FUTURE
WORK

We presented a novel framework for helping a
video analyst to robustly detect changes in night-time
outdoor surveillance by mobile cameras. In order to
avoid exhaustive cross-frame search of finding back-
ground frames, a Frame Localization And Registra-
tion (FLAR) is proposed to solve the problem effi-
ciently. The frame localization builds upon retriev-
ing the most similar background frame based on the
SURF descriptor together with a temporal filtering ap-
plied to the retrieval results to handle outliers. Then, a
recently proposed alignment scheme that overcomes
appearance variations between frames acquired at
different times is used to register the correspond-
ing frames in space; thus applying a simple change



Figure 5: Alignment instances in negative color for (first row) SIFT-flow, (second row) GDB-ICP and (third row) ECC
algorithm based on the frame pairs between the top and bottom row in Fig. 4.

detection to aligned frames allows the detection of
suspicious areas. Experiments with real night se-
quences recorded by in-vehicle cameras demonstrate
the performance of the proposed method and verify
its efficiency and effectiveness against other methods.
Moreover, the ability of the proposed scheme to deal
with daylight sequences was experimentally verified.

We recall that the proposed system primarily aims
at helping the guarding/surveillance staff. A fully au-
tomatic system that recognizes objects could work
in conjunction with annotated databases in a class
level. In order to perform more efficient monitor-
ing, the proposed algorithm can be extended includ-
ing super–resolution imaging (Kim et al., 2010) and
experimental sampling (Wang et al., 2003). The lat-
ter dynamically models the evolving attention exploit-
ing the context and past experience information in or-
der to detect and track moving objects in surveillance
videos. We leave such approaches for future work.

Supplemental Material: Since it is difficult to il-
lustrate video processing in a written document, we
attach video results of the proposed algorithm.
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