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J.M. Álvarez and A. López

Abstract— Road detection is a relevant task within vision–
based systems devoted to assist the driver. Although they have
been improved during the last decade, these algorithms are usu-
ally validated using qualitative results. Nonetheless, quantitative
evaluation is necessary either to enable the comparison between
different algorithms or to achieve the optimal performance
of a given one. In this paper we present a composite index
to quantitatively assess the performance of road detection
algorithms. The measure is based on a weighted combination of
different evaluations which use a trade-off between precision
and recall scores. Obtaining a single index score is a major
benefit. It can be used to easily compare algorithms or to
properly set their parameters. Moreover, innovatively our
proposal includes a human perception criterion to improve its
usefulness. Experiments on real–world data corroborate the
usefulness of the proposed index.

I. INTRODUCTION

Advanced driver assistance systems (ADAS) have arisen

as a contribution to traffic safety. Within this field, on–board

vision has been widely used since it has many advantages

(higher resolution, low power consumption, low cost, easy

aesthetic integration, non-intrusive nature) over other active

sensors such as radar or lidar. Common vision–based systems

use at least one on–board camera mounted facing forward the

front windscreen of the car. Road detection (RD) is a very

important task within these vision–based systems since it can

be used either for assisting other driving systems [1] or for

their own right [2]. The main idea of these algorithms is to

classify each pixel of the incoming images as road or non–

road, based on theory of machine learning using features

such as color or texture (Fig. 1).

Fig. 1. Road detection algorithm: each pixel is classed as road (white) or
background (black) depending on its similarity with a known road model.

Due to their relevance, important efforts have been done

in order to improve RD algorithms. However, no agreement

has been reached to properly evaluate their quality. Such
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evaluation is absolutely essential to characterize an individual

algorithm and for comparing algorithms.

Currently, most authors validate their algorithms using

visual results [3], [2], [4] and only a few of them use some

quantitative criterion [5], [6]. In this sense, the most relevant

assessment is based on the measure of quality ĝ introduced

in [7] and used in [8]. Nevertheless, none of these methods

consider specific characteristics of the scenes imaged within

the RD context: the perspective effect in the image, the

ambiguity at the edge of the road and trade–off between

hit and miss detection rates such as the trade–off between

road detection and obstacle preservation (Fig. 2).

(a) (b) (c) (d)

Fig. 2. The main lack of quality of current road detection methods is
due to: a) boundary ambiguity, i.e., the uncertainty in the exact position
of the edges of the road; b) different error perception when miss–classified
pixels represent points closer to the camera c) final application requirements,
e.g., miss–classifying objects is more relevant than miss–classifying the
background; d) over–detection and under–detection do not have the same
relevance.

In this paper we propose a novel approach to validate RD

results. The aim of this proposal is twofold: deciding which

RD algorithm is the best based on the final application and

finding the optimum parameters of an individual algorithm

to process a complete sequence of images. We introduce

the Road Detection Index: a composite measure which is a

weighted combination of the evaluations of all interesting

objects present in the scene (including the road). Each

of these evaluations is based on common metrics such as

precision and recall. The weighting strategy is used to meet

the requirements of different final applications, e.g., car

tracking applications prefers under–segmenting the road but

completely preserve cars while road following algorithms

will prefer miss–classifying car pixels while achieving a

higher accuracy at the road region. Moreover, the proce-

dure incorporates a human perception criterion to adapt

the assessment to the real perception of the scene (cost–

sensitive measures). Such criterion has been included earlier

in the context of evaluating general segmentation algorithms

[9], [10]. Finally, the proposed scheme also considers the

ambiguity in determining the exact position of the edges
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of the road (or vehicles) while generating the ground truth.

The procedure weights down the errors within the boundaries

more than errors elsewhere in the image.

The rest of this paper is organized as follows. First, in

Sect. II, the proposed index is defined. In Sect. III the ground

truth required and the procedure to set up the index are

detailed. Experiments proving the usefulness of the index

are shown in Sect. IV. Finally, in Sect. V, conclusions and

future work are drawn.

II. ROAD DETECTION INDEX

First, in Sect. II-A, the index requirements are defined.

Then, in Sect. II-B, the cost-sensitive measures are derived

and the Road Detection Index is stated in Sect. II-C. This

index is expended to tackle the boundary uncertainty in

Sect. II-D.

A. Requirements

The first step is to highlight some desirable properties for

the proposed index:

• The index must take into account positive and negative

results. That is, over–detection and under–detection

must be considered independently.

• The index must be capable to deal with boundary

ambiguity.

• The values of the index must be bounded, so they can

be easily analyzed and compared.

• The index must weight down the error committed to

detect road pixels representing points far away from the

camera.

• Although the main task is detecting the road surface,

the index must penalize those algorithms which do not

preserve other objects on the road.

• The scheme must be parameterizable to cope with

different applications.

• Finally, the index must provide a continuous magnitude,

so the adjustment of parameters of the algorithms can

be carried out accurately.

Following these ideas, the computation of the index is

summarized in Fig. 3. The process is divided in different

parts corresponding with different categories of objects in

the scene. Obviously, the main object is the road surface.

Other objects may be vehicles or pedestrians. Each of these

evaluations is done using the cost-sensitive precision recall

measures defined in Sect. II-B. Finally, the Road Detection

Index (RDI) is the overall combination of these evaluations.

B. Cost–Sensitive Precision-Recall Measures

Since our aim is knowing about the amount of over

and under–segmented ratio in the result mask, we have

focused the evaluation on two metrics: precision (P ) and

recall (R) [11]. These scores have been widely used in

information retrieval systems. However, the interpretation

of these values for the assessment of image segmentation

is slightly different. In probabilistic terms, precision is the

probability that the result is valid, and recall is the probability

that the ground truth data was detected. Thus, the aim in

Fig. 3. Road Detection Index computation. A set of images is hand labelled
and processed by the RD algorithm. Both results are passed to a set of blocks
which evaluate the quality of the detection using the cost-sensitive precision
recall measures defined in Sect. II-B. These measures are combined to obtain
the final index.

image segmentation is to get both high precision and high

recall scores. We consider using both scores since each one

provides different information about the segmented image: a

low recall value is typically the result of under–segmentation

and indicates failure to capture salient image structures; a low

precision value is typically the result of significant over–

segmentation, or when a large number of boundary pixels

have greater localization errors.

Once selected the most appropriate metrics to be used,

their definition has been modified to consider the perspective

effect present in the image. That is, errors in pixels repre-

senting points closer to the camera position are more rele-

vant than those errors in pixels representing further points.

With this aim, a weighting strategy has been introduced

to modify the contribution of each pixel to the final P

and R scores. Thus, considering S1 = {s1, s2, ..., sN} is

the segmented result and given its associated ground–truth,

GT = {gt1, gt2, ..., gtN}, (where gti = 1 for ”road” pixels

and gti = 0 for ”non–road” pixels), precision and recall

scores can be defined as,

P =
|S1 ∩ GT |

|S1|
=

∑i=N

i=1
(si ∩ gti)

∑i=N

i=1
si

, (1)

R =
|S1 ∩ GT |

|GT |
=

∑i=N

i=1
(si ∩ gti)

∑i=N

i=1
gti

. (2)

Given a weight map, W = {w1, w2, ..., wN}, the value of

the weighted precision (Pw) and weighted recall (Rw) scores

can be defined as:

Pw =

∑i=N

i=1
wi(si ∩ gti)

∑i=N

i=1
wisi

, (3)
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Rw =

∑i=N

i=1
wi(si ∩ gti)

∑i=N

i=1
wigti

, (4)

where wi ∈ W denotes the weight on the i-th element of

the data.

In addition, an advantage of having these two scores (P

and R) is that they can be weighted differently to highlight

their relevance. The F–measure (or effectiveness) is a single

measure that trades–off precision versus recall values and is

calculated using the weighted harmonic mean of precision

and recall (further details on harmonic mean can be found

in [11]):

F =
1

α 1

P
+ (1 − α) 1

R

=
(β2 + 1)PR

β2P + R
, (5)

where β2 = 1−α
α

, α ∈ [0, 1] and thus β2 ∈ [0,∞]. F ranges

from 0 to 1.

The default balanced F–measure equally weights precision

and recall, which means α = 1

2
or β = 1 and F = 2PR

P+R
.

However, using an even weighting is not the only choice.

Values of β < 1 emphasize precision, while values of β > 1
emphasize recall. Two other commonly used F–measures are

F2–measure and F0.5–measure. The former, weights recall

twice as much as precision. The latter weights precision

twice as much as recall.

The algorithm delivers a different F value for each block

(Fr, Fv..., Fo) as shown in Fig. 3.

C. Road Detection Index

Once defined the metrics used within each block (Pw and

Rw) and the measure obtained as the output of these blocks

(Fr, Fv ...,Fi), the remaining is combining them into the

final Road Detection Index (RDI). Having a single index

is important in order to easily compare different algorithms

or different results from the same algorithm.

Once more, a weighting strategy is used to emphasize the

relevance of having an accurate road surface or to emphasize

the relevance of preserving other objects in the scene. Thus,

the final RDI is a weighted combination of Fr, Fv..., Fi:

RDI =

∑N

i=1
qi

∑N

i=1

qi

Fi

, (6)

where N is the number of evaluation blocks. Fi are the mea-

sures delivered in each block, i ∈ (road, vehicle..., object).
qi ∈ [0...1] are the weights associated to each of these blocks.

RDI ranges between 0 and 1. The higher index, the higher

quality of the algorithm.

D. Dealing with boundary ambiguity

Having the main index defined, the remaining is con-

sidering the boundary uncertainty. This error refers to the

inherent ambiguity in the boundary perception when man-

ually segmenting the images to generate the ground truth

(Fig. 2a). That is, the exact localization of the boundaries

(of the road or any object in the scene) may differ from one

human segmenter to the others.

Fig. 4. Each ground truth is processed to differentiate between the inner
part of the object (road) and its boundary. The boundaries are obtained with
a dynamical structural element (ee) which size is modulated depending on
position of the pixel being processed. Thus, pixels representing points closer
to the camera use a bigger ee than those representing further away points.
From left to right, complete ground truth, road boundary, road inner region
and ee modulation.

To minimize this error the ground truth (I) is divided into

two different masks: boundary mask (Ib) and inner mask

(Ii). These masks are extracted considering not only the edge

pixel but its surrounding region:

Ib = (I − (I ⊖ ee)) | ((I ⊕ ee) − I), (7)

Ii = I − Ib, (8)

⊖ and ⊕ are the binary erosion and dilation respectively

performed using the structural element ee. Its size varies

dynamically depending on the position of the filtered pixel.

Using this ee the method considers the perspective effect

present in the scene. Its size is modulated depending on the

boundary extracted: road or objects (Fig. 4).

Two different F values are worked out independently for

the boundary and the inner part of the object. The output

of each block (Fr, Fv..., Fi) corresponds to the average of

these two values. Nevertheless, this method does not produce

major benefits if a single ground truth is considered. Hence,

we have expanded the measure to compare the algorithm

result against multiple ground truths using a leave–one–

out procedure [12]. If we have K different ground truths

available, we can obtain K different precision and recall

scores considering pairwise evaluations (P k
w and Rk

w respec-

tively). A single recall score is obtained as the average of P k
w

(k ∈ [1, 2...,K]). A single precision is calculated using the

number of pixels matching the mask of at least one ground

truth. That is, it is obtained comparing the algorithm result

against the logical or of all the ground truths available.

Finally, instead of arithmetical average of the boundary

and the inner part scores we consider the number of ground

truths available (K). Thus, the contribution of the boundary

assessment to the final measure is proportional to K. That is,

the bigger number of ground truths, the bigger contribution

due to the boundary. This is quite logical since having a

single ground truth for comparison does not reduce the

localization error. This method slightly differs from the

weighting strategy presented in [13] where pixels are directly

weighted accordingly to how many observers have marked

the given pixel as a boundary one.

III. GROUND TRUTH AND INDEX SET UP

Although road detection algorithms deliver binary masks

(road and non-road pixels) the proposed evaluation needs

more than one binary mask to cope with its requirements
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(Fig. 4). Each ground truth provides information regarding

the road region and those interesting objects (vehicles and/or

pedestrians) in the scene. Furthermore, each image should be

manually segmented more than once to assess properly the

boundary region.

The perspective weights (W ) have been adjusted as a

quadratic function of the distance between the point repre-

sented by each pixel and the camera position. Thus, pixels

closer to the center of the image give lower weights than

further ones. Balanced weight have been used between over-

segmenting and under-segmenting (β). Finally, two different

adjustments for the weights of each block (qi) have been

used. The former (RDI from now on) is a balanced weighting

between road precision and object preservation. The latter,

(RDIveh) emphasizes object preservation (twice relevance

on the vehicles than on the road). These two configurations

corresponds to two different common road detection appli-

cations: road following and vehicle detection. In addition,

the simplest configuration has been considered (F ). Such

configuration sets perspective weights (W ) to 1 and fully

emphasizes road precision without considering objects. Thus,

it incorporates neither the weighting nor the combination

of indexes and equals to the effectiveness. Finally, three

different users have generated ground truths for each image

(K = 3).

IV. EXPERIMENTS

This section explores the benefits of using the proposed

measure in front of the existing ones. We first compare

different detection results of different images in terms of

maximum performance and next the index is used to set the

optimal parameters of an individual algorithm over a large

number of images.

A. Index Validation

Our first experiment consists in comparing the perfor-

mance of different measures. The aim of this comparison

is not to obtain a higher/lower score, but comparing the

ability of the measure to correspond to the fidelity of the

result accordingly with the index requirements (Sect. II-A).

Five different measures have been compared: RDI, RDIveh,

F and two other measures currently used within the field:

accuracy (ACC) and quality (ĝ). These two measures are

derived using the four entries of a contingency table: true

positives (TP) is the number of correctly labelled road

pixels, true negatives (TN) is the number of non-road pixels

detected, false positives (FP) is the number of non-road

pixels classified as road pixels and false negatives (FN) is

the number of road pixels erroneously marked as non-road.

Accuracy (ACC = TP+TN
TP+FP+FN+TN

) is the fraction of

classifications that are correct. Quality (ĝ = TP
TP+FP+FN

)

takes into account the completeness of the extracted data

as well as its correctness. The first comparison considers

the case where no objects but the road are present. A set

of results of a given image has been generated (Fig. 5)

and assessed (Table- I). The most relevant thing is how the

results are arranged. Top row shows the order obtained using

accuracy, quality and F measures. Middle row shows the the

order obtained using RDI and RDIveh (notice that since no

interest objects are in the image these measures have the

same value). The weighting process highlights those results

where miss–classified pixels represent points further away

from the camera. In addition it is shown in the last column

how all the measures get closer to one (their maximum value)

when the result is almost the ground truth.

(1) (2) (3) (4) (5)

Fig. 5. Comparison of different measures performance applied to road
detection results when no objects are present in the scene. Results in
rows are arranged depending on its performance (the most to the left,
the lower score). Upper row corresponds to the common order obtained
using accuracy, quality and F (the three measures yield the same). Middle
row shows the order obtained with RDI and RDIveh (the two measures
the same). Bottom row shows the masks of second row overlapped on the
corresponding original images.

TABLE I

QUALITY ASSESSMENT OF ROAD DETECTION RESULTS SHOWN IN FIG. 5

Top row Middle row

ACC ĝ F RDI RDIveh.

1 0.9312 0.8682 0.9295 0.8468 0.8468

2 0.9344 0.8745 0.9330 0.9001 0.9001

3 0.9586 0.9236 0.9603 0.9385 0.9385

4 0.9642 0.9340 0.9659 0.9797 0.9797

5 0.9876 0.9761 0.9879 0.9922 0.9922

The second comparison refers to the advantages of using

RDI when other objects are present in the scene. With this

aim a few results for different images have been gener-

ated (Fig. 6) and assessed (Table- II). These results com-

prise different aspects such as non-preserving objects, miss–

classifying road/background boundary pixels and different

degrees of degradation.

This summary reveals that the selection of the best result

(bold values) varies depending on the measure used. Once

again, all these measures tend to the maximum value (one)

when the result is really close to the ground truth (e.g.,

first image, fourth row). However, special attention should

be paid on italic values. These rows reveals the differences

in performance of the measures when cars are present in

the scene: while RDI and RDIveh. vary depending on these

errors, the rest of measures do not. Within these rows,

RDI and RDIveh indexes are lower than the others due to

the errors on the cars but not the other measures. As an

example, in the first image, using accuracy, F or quality a
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(a) (b) (1) (2) (3) (4) (5)

Fig. 6. Road detection results used to validate RDI. (a) original image. (b) Ground truth. (1) - (5) Different assessed results which represent either the
variations of an individual algorithm or the results using different RD algorithms.

TABLE II

QUALITY ASSESSMENT OF ROAD DETECTION RESULTS SHOWN IN FIG. 6

RDI RDIveh. F ACC ĝ

1 0.7914 0.7133 0.9581 0.9574 0.9195

2 0.7562 0.7053 0.8417 0.8633 0.7267

Img. 1 3 0.5021 0.3903 0.9618 0.9614 0.9265

4 0.9890 0.9956 0.9749 0.9755 0.9510

5 0.8441 0.7822 0.9735 0.9734 0.9484

1 0.8695 0.8840 0.8226 0.8493 0.6987

2 0.9645 0.9855 0.9123 0.9421 0.8387

Img. 3 3 0.7283 0.6369 0.9531 0.9648 0.9103

4 0.9752 0.9843 0.9520 0.9654 0.9084

5 0.9792 0.9915 0.9448 0.9623 0.8954

1 0.4553 0.3581 0.8207 0.8380 0.6960

2 0.8253 0.7954 0.8745 0.9082 0.7771

Img. 4 3 0.8909 0.8964 0.8738 0.9102 0.7759

4 0.8730 0.8966 0.8217 0.8793 0.6974

5 0.7859 0.7974 0.7410 0.8333 0.5886

high performance is achieved while the closest car is almost

undetected. RDI weights down this lack of precision and

gives a low score. This effect is emphasized if more relevance

is given to the object evaluation block (RDIveh). Thereby, the

proposed index is more suitable to highlight and differentiate

between results.

B. Algorithm Optimization

The second experiment consists in tuning a given algo-

rithm. A simply probability classifier on intensity values has

been used to decide whether a pixel belongs or not to the road

class (Fig. 7). The road model at each frame is built under

the assumption that the bottom part of the image belongs to

the road [3]. Thus, the parameter to be optimally fixed is λ,

the threshold probability of being road (it runs in [0,1]). The

lower threshold the more permissive classifier.

To properly select λ, the algorithm has been run using

different threshold values and its results have been analyzed.

Fig. 7. Simple road detection algorithm. The pixels (intensity values) of the
incoming image are classified as road (white) depending on their probability
to belonging or not to the road class. The road model is built using the lower
part of the image.

The λ value which produces the highest score is the opti-

mal λ for the given image. Since different measures have

been used, different optimal thresholds have been obtained

(Fig. 8). As shown in Fig. 8 the threshold obtained using

accuracy, quality of F are more permissive than RDI. Nev-

ertheless, is one of those thresholds is used the car present

in the scene is not preserved (top right result). RDI imposes

a higher threshold value (more restrictive) which preserves

the car in the scene (bottom right example). In addition,

RDI clearly differentiate those results which do not hold the

requirements (bottom left example).

However, our aim is not optimizing a single image but

obtaining the optimal performance for a complete sequence

of images that can be thought as a training set for the

algorithm under development. Therefore, instead of looking

for the maximum score on a given image, the maximum of

the averaged values for each threshold for all the training

images has been used (Fig. 9). Reported results (Fig. 10)

show the ability of preserving objects when the RDI index

is used (red segmentation) in front of the lack of precision

when other measures are used (yellow segmentation).

V. CONCLUSIONS

In this paper, we have defined a novel index to quantita-

tively assess the performance of road detection algorithms.

The proposed index is focused on specific requirements of

the final application and specific properties of the scenes

imaged by these algorithms rather than relying on a general
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Fig. 8. Different scores obtained by varying the parameters of an individual algorithm on a single image. The optimal values of λ (highest precision
scores) vary depending on the measure used. Results on the right show the differences between setting λ using quality (ĝ) (top) and RDI (bottom) for a
given image (top left). RDI score weights down those results which do not preserve objects in the scene (bottom left).

criterion to evaluate them. The index combines information

from different evaluations so it is capable to deal with

major problems such as boundary ambiguity and application

dependency. In addition, the index provides a perceptual eval-

uation which corresponds with the different error perception

depending on the position of the pixel in the image.

Fig. 9. Assessment scores for all possible thresholds are averaged for all
the training images. Different measures yield different optimal thresholds.

Fig. 10. Different results obtained when the threshold is selected using ĝ

(upper row) and RDI (lower row).

Experiments have proved the benefits of using this index

instead of other existing measures. It is suitable for deciding

not only the best road algorithm from an application point

of view, but it is also suitable for characterizing and tuning

an individual algorithm.

In the future, we aim to use this index to characterize and

compare current road detection algorithms.
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