|
David Vazquez, Antonio Lopez and Daniel Ponsa. 2012. Unsupervised Domain Adaptation of Virtual and Real Worlds for Pedestrian Detection. 21st International Conference on Pattern Recognition. Tsukuba Science City, JAPAN, IEEE, 3492–3495.
Abstract: Vision-based object detectors are crucial for different applications. They rely on learnt object models. Ideally, we would like to deploy our vision system in the scenario where it must operate, and lead it to self-learn how to distinguish the objects of interest, i.e., without human intervention. However, the learning of each object model requires labelled samples collected through a tiresome manual process. For instance, we are interested in exploring the self-training of a pedestrian detector for driver assistance systems. Our first approach to avoid manual labelling consisted in the use of samples coming from realistic computer graphics, so that their labels are automatically available [12]. This would make possible the desired self-training of our pedestrian detector. However, as we showed in [14], between virtual and real worlds it may be a dataset shift. In order to overcome it, we propose the use of unsupervised domain adaptation techniques that avoid human intervention during the adaptation process. In particular, this paper explores the use of the transductive SVM (T-SVM) learning algorithm in order to adapt virtual and real worlds for pedestrian detection (Fig. 1).
Keywords: Pedestrian Detection; Domain Adaptation; Virtual worlds
|
|
|
David Lloret, Joan Serrat, Antonio Lopez and Juan J. Villanueva. 2003. Ultrasound to MR Volume Registration for Brain Sinking Measurement. 1rst. Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2003.420–427. (LNCS.)
|
|
|
David Lloret, Joan Serrat, Antonio Lopez, A. Soler and Juan J. Villanueva. 2000. Retinal image registration using creases as anatomical landmarks. 15 th International Conference on Pattern Recognition.207–2010.
Abstract: Retinal images are routinely used in ophthalmology to study the optical nerve head and the retina. To assess objectively the evolution of an illness, images taken at different times must be registered. Most methods so far have been designed specifically for a single image modality, like temporal series or stereo pairs of angiographies, fluorescein angiographies or scanning laser ophthalmoscope (SLO) images, which makes them prone to fail when conditions vary. In contrast, the method we propose has shown to be accurate and reliable on all the former modalities. It has been adapted from the 3D registration of CT and MR image to 2D. Relevant features (also known as landmarks) are extracted by means of a robust creaseness operator, and resulting images are iteratively transformed until a maximum in their correlation is achieved. Our method has succeeded in more than 100 pairs tried so far, in all cases including also the scaling as a parameter to be optimized
|
|
|
David Lloret, Antonio Lopez and Joan Serrat. 1997. Rigid Registration of CT and MR volumes based on Rothes creases. (SNRFAI’97) 7th Spanish National Symposium on Pattern Recognition and Image Analysis.1–6.
|
|
|
David Geronimo, Frederic Lerasle and Antonio Lopez. 2012. State-driven particle filter for multi-person tracking. In J. Blanc-Talon et al., ed. 11th International Conference on Advanced Concepts for Intelligent Vision Systems. Heidelberg, Springer, 467–478.
Abstract: Multi-person tracking can be exploited in applications such as driver assistance, surveillance, multimedia and human-robot interaction. With the help of human detectors, particle filters offer a robust method able to filter noisy detections and provide temporal coherence. However, some traditional problems such as occlusions with other targets or the scene, temporal drifting or even the lost targets detection are rarely considered, making the systems performance decrease. Some authors propose to overcome these problems using heuristics not explained
and formalized in the papers, for instance by defining exceptions to the model updating depending on tracks overlapping. In this paper we propose to formalize these events by the use of a state-graph, defining the current state of the track (e.g., potential , tracked, occluded or lost) and the transitions between states in an explicit way. This approach has the advantage of linking track actions such as the online underlying models updating, which gives flexibility to the system. It provides an explicit representation to adapt the multiple parallel trackers depending on the context, i.e., each track can make use of a specific filtering strategy, dynamic model, number of particles, etc. depending on its state. We implement this technique in a single-camera multi-person tracker and test
it in public video sequences.
Keywords: human tracking
|
|
|
David Geronimo, Antonio Lopez, Daniel Ponsa and Angel Sappa. 2007. Haar Wavelets and Edge Orientation Histograms for On-Board Pedestrian Detection. In J. Marti et al., ed. 3rd Iberian Conference on Pattern Recognition and Image Analysis, LNCS 4477.418–425.
Keywords: Pedestrian detection
|
|
|
David Geronimo, Antonio Lopez and Angel Sappa. 2007. Computer Vision Approaches for Pedestrian Detection: Visible Spectrum Survey. In J. Marti et al., ed. 3rd Iberian Conference on Pattern Recognition and Image Analysis, LNCS 4477.547–554.
Abstract: Pedestrian detection from images of the visible spectrum is a high relevant area of research given its potential impact in the design of pedestrian protection systems. There are many proposals in the literature but they lack a comparative viewpoint. According to this, in this paper we first propose a common framework where we fit the different approaches, and second we use this framework to provide a comparative point of view of the details of such different approaches, pointing out also the main challenges to be solved in the future. In summary, we expect
this survey to be useful for both novel and experienced researchers in the field. In the first case, as a clarifying snapshot of the state of the art; in the second, as a way to unveil trends and to take conclusions from the comparative study.
Keywords: Pedestrian detection
|
|
|
David Geronimo, Angel Sappa, Antonio Lopez and Daniel Ponsa. 2007. Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection. Proceedings of the 5th International Conference on Computer Vision Systems.
Abstract: On–board pedestrian detection is in the frontier of the state–of–the–art since it implies processing outdoor scenarios from a mobile platform and searching for aspect–changing objects in cluttered urban environments. Most promising approaches include the development of classifiers based on feature selection and machine learning. However, they use a large number of features which compromises real–time. Thus, methods for running the classifiers in only a few image windows must be provided. In this paper we contribute in both aspects, proposing a camera
pose estimation method for adaptive sparse image sampling, as well as a classifier for pedestrian detection based on Haar wavelets and edge orientation histograms as features and AdaBoost as learning machine. Both proposals are compared with relevant approaches in the literature, showing comparable results but reducing processing time by four for the sampling tasks and by ten for the classification one.
Keywords: Pedestrian Detection
|
|
|
David Aldavert, Ricardo Toledo, Arnau Ramisa and Ramon Lopez de Mantaras. 2009. Efficient Object Pixel-Level Categorization using Bag of Features: Advances in Visual Computing. 5th International Symposium on Visual Computing. Springer Berlin Heidelberg, 44–55.
Abstract: In this paper we present a pixel-level object categorization method suitable to be applied under real-time constraints. Since pixels are categorized using a bag of features scheme, the major bottleneck of such an approach would be the feature pooling in local histograms of visual words. Therefore, we propose to bypass this time-consuming step and directly obtain the score from a linear Support Vector Machine classifier. This is achieved by creating an integral image of the components of the SVM which can readily obtain the classification score for any image sub-window with only 10 additions and 2 products, regardless of its size. Besides, we evaluated the performance of two efficient feature quantization methods: the Hierarchical K-Means and the Extremely Randomized Forest. All experiments have been done in the Graz02 database, showing comparable, or even better results to related work with a lower computational cost.
|
|
|
David Aldavert, Ricardo Toledo, Arnau Ramisa and Ramon Lopez de Mantaras. 2009. Visual Registration Method For A Low Cost Robot: Computer Vision Systems. 7th International Conference on Computer Vision Systems. Springer Berlin Heidelberg, 204–214. (LNCS.)
Abstract: An autonomous mobile robot must face the correspondence or data association problem in order to carry out tasks like place recognition or unknown environment mapping. In order to put into correspondence two maps, most methods estimate the transformation relating the maps from matches established between low level feature extracted from sensor data. However, finding explicit matches between features is a challenging and computationally expensive task. In this paper, we propose a new method to align obstacle maps without searching explicit matches between features. The maps are obtained from a stereo pair. Then, we use a vocabulary tree approach to identify putative corresponding maps followed by the Newton minimization algorithm to find the transformation that relates both maps. The proposed method is evaluated in a typical office environment showing good performance.
|
|