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Abstract 

Retinal images are routinely used in ophthalmology to 
study the optical nerve head and the retina. To assess ob­
jectively the evolution of an illness, images taken at differ­
ent times must be registered. Most methods appeared so far 
have been designed spec({lcally for a single image modality, 
like temporal series or stereo pairs of angiographies,fluo­
rescein angiographies or SLO images, which makes them 
prone to fail when conditions vary. In contrast. the method 
we propose has shown to be accurate and reliable on all the 
former modalities. Actually, it has been adapted from the 
3D registration of CT and MR image to 2D. Relevant fea­
tures (also known as landmarks) are extracted by means of 
a robust creaseness operator, and resu lting images are iter­

atively transformed until a maximum in their correlation is 
achieved. Our method has succeed in more than 100 pairs 
tried so far, in all cases including also the scaling as a pa­
rameter to be optimized. 

1. Introduction 

Retinal images are a diagnostic tool for examining the 
condition of the retina. For a number of diseases, e.g. di­
abetic retinopathy, it is convenient to track the evolution 
through a period of time, while for others it may be nec­
essary to compare images taken at the same time but with 
different modalities. These images show the vascular tree 
of the eye, which permits to determine objectively the areas 

where blood flow seems occluded or to be leaking. T here 
are several retinal image modalities: retinographies are 

taken using the ophthalmoloscope under natural light, and 

often they have been applied a green filter (green images) 

to discard the dominant red component. Fluorescein an­

giographies sense the fluorescence emitted from the ves­
sels of the retina after the injection of a contrast dye. An­
other novel technique is the Scanning Laser Ophthalmo-
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scope SLO, which provides better resolution, controllable 
excitation intensity and variable depth of focus. All this 

modalities can be combined to produce simultaneous stereo 
pairs or sequential temporal series of the same eye, in or­
der to study the optic disk for signs of progression of an 

illness. Martinez-Costa [6], for instance, seeks high incre­

ments in gray level at the foveal center in a series of tem­
poral images to detect macular leakage due to retinal vein 

occlusions. 

Since the position of the eye changes every time a pic­

ture is taken, the resulting images will show some degree of 

rotation and translation. Before comparing them, one has 
to align their corresponding features. T hi s  problem, known 
as registration, has been widely studied in medical imaging. 
See, for instance [5] for a survey of this techniques. 

A number of papers are devoted solely to detect the ves­
sels in the image. In [9] ToLias et a1. employ fuzzy clus­

tering to determine vessel and non-vessel regions, while in 
[7] Martinez-Perez binds a region growing algorithm to lo­

cal curvature. The information thus extracted is useful for 
clinical analysis, but it is not used for comparison to other 
images. In the registration field, another group of papers ex­
tract the bifurcation points of the vessels by means of math­
ematical morphology [11] or Forster's detector [1] and then 

they choose some heuristic invariant to rotation and trans­

lation to match corresponding points. Thus, the resulting 
method seems to be highly dependent on the results of the 
extraction step. Whenever the number of detected points is 
too low, or the corresponding sets too separate, their algo­

rithm is prone to fail. 

Another well known approach in medical image regis­

tration are the mutual information methods. These methods, 

which were applied firstly on the registration of head images 

in 1995 [10], [4], do not extract corresponding features but 

make use of all the information available. They measure the 

statistical dependence or information redundancy between 
the image intensities of the corresponding voxels of both 
images. Nicola Ritter has report success in a method based 



on this approach in [8]. In her paper, she provides with an 

excellent review of existing methodologies, and she stresses 

the importance of a good database of images to test the al­

gorithms under realistic assumptions. Indeed, some papers 

take into account only translations, or accept as a good re­
sult a ten-pixels misregistration. A major part of the paper 

is dedicated on the problem of local maxima. They occur 

when the function to measure the alignment gets stuck into 

a value which is the highest in a local neighbourhood but 

not in the while parameter space. Because the optimization 

is a function of 3 parameters (two translation plus one rota­
tion angle, plus sometimes two scaling factors) an exhaus­

tive search is not feasible. Thus she uses a scheme based 

on pyramidal sampling and the simulated annealing search 

algorithm. She reports success on her experiments on an 
about 100 images database. 

Our major criticism to her work regards to the proposed 

search method. Although successful, the simulated anneal­

ing algorithm is highly dependent on a large number of pa­
rameters, 6 global plus 7 for each layer of the pyramidal 

search. These parameters are hidden deep in the code, mak­

ing it impossible for a user to tune to any change in the im­
age constraints. Also, because the method is not designed to 

segment the contents of the images, it can not provide with 

any further measure about the vascular tree. 

2. Our method 

Our method resembles the human approach to image 
matching in the sense that we also employ as guidelines fea­

tures common to both images. It seems natural to us not to 

restrict the comparison to the bifurcation points, but to use 

the more significant structures visible in the image, that is, 

the vessel tree. Opposite to the bifurcation points approach 

([1], [11]), ours will not have such a strong dependence of 

the quality of the segmentation. 

Perfect segmentation of the whole vessel tree is not an 
easy task because images often provide poor contrast and 

vessels vary in diameter and intensity level; some papers 

are dedicated to this sole purpose ([7], [9]). However, we 
were fortunate to have already addressed a similar prob­

lem for CT and MR brain registration. For this purpose, 
we developed a precise and reliable detector of the crease­

ness (ridgeness or valleyness) of an image. We describe this 

operator in section 2. 1. 

After vessels have been extracted, we needed to choose 
a scheme to transform iteratively the images until they 

become aligned. In literature many methods to measure 

the alignment exist; we could, for instance, segment each 

branch and follow some heuristic to choose its correspond­

ing. Its drawback is the same as bifurcation methods have: 

the extra segmentation step is prone to propagate its er­

rors to the optimization step. Therefore, we choose the 
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well-known cross-correlation between the two images. This 

measure is fast and also, as we require, it matches common 
extracted features despite of missing or spurious data. 

We have implemented the iterative Simplex algorithm to 
optimize the alignment process, and added an initial wide 

search to improve its robustness. The optimization process 

is fully described in section 2.2. 

2.1. Creaseness measures 

Vessels are reliable landmarks in retinal images because 

they are almost rigid structures and they are depicted in 

all modalities. Moreover, they can be thought as creases 

(ridges or valleys) when images are seen as landscapes. 

Amongst the many definitions of crease, the one based on 

level set extrinsic curvature (LSEC) has useful invariance 

properties. Given a function L : R d -+ R, the level set for 
a constant 1 consists of the set of points {x I L (x) = l}. For 

2D images, L can be thought as a topographic relief or land­
scape and the level sets are its level curves. It is well-known 

that negative minima of the level curve curvature /\', level by 

level, form valley curves, and positive maxima ridge curves. 

However, the usual discretization of LSEC is ill defined 

for a number for cases, giving rise to discontinuities in the 

output image. Instead, we have employed the }.II LSEC -
-ST operator, as defined in [3] ( K,d in page 130). 

2.2. Search scheme 

After the creaseness extraction, the following step is to 

iteratively transform one of the images until it becomes 
properly aligned with the other. A suitable function to mea­
sure the quality of the alignment is the correlation function 

CT = LXEf f(i!) . g(T(i!», where f and g are the crease­

ness images and T represents a transformation whose pa­
rameters we want to test. A key step is not to transform all 

the pixels in the image, but only those with creaseness val­

ues higher than a small fixed threshold. This step saves up 

to 95% of the total computations. 

The function CT together with the 3 parameters of the 
transformation defines a space where the maximum value, 

i.e. the best alignment, must be found. The Simplex al­

gorithm works properly for this purpose, but for a number 

of images it fails to converge. The problem is that the ini­

tial guess for these images had been set too far to the final 

value, and the Simplex algorithm gets trapped somewhere 

in a local maximum. Therefore, we need to scan fast and 
efficiently the search space to provide the Simplex conver­

gence algorithm with a set of candidate seeds, one of which 

might be sufficiently close to the global maximum. Since 

we do not need high accuracy for this initial step, we have 

used the same cross correlation function but in the Fourier 

domain. First, we transform one of the images for a given 



rotation angle and we keep the best of the candidate transla­
tions given by the Fourier cross correlation. Mter repeating 
this step for a range of rotations, we will have a set of can­
didate values to be optimized. 

For large images (more than 512 rows or columns) the 
proposed method has a bottleneck at the initial step: each 
sampled rotation demands the computation of three costly 
Fourier transforms. The solution was to sample the images 
in a hierarchical scheme down to a size of 128 x 128 fol­
lowing a scheme we applied to head images registration in 
a previous paper [2], this is, building two pyramids where 
the creaseness images are at the bottom, and the intensity of 
each pixel at a given level is the maximum of a local neigh­
bourhood at the previous level. Compared to the standard 
Gaussian sampling, this approach has the advantage to keep 
the creases through the hierarchy. 

The explained scheme worked successfully for all sets of 
images; even without the initial seed step, all except one ac­
tually converged. Despite of the global convergence, results 
were visually disappointing when branches were located far 
from the center. We found this was caused by a different 
scaling in the images, and we decided to include scaling in 
a final additional step. Results then were accurate for all 
parts of the image. 

3. Results 

We designed a test-bench to validate the choices we 
took while designing the search strategy. We evaluated five 
search configurations: (1) no hierarchical, no initialization 
(2) no hierarchical, initialization using best seeds of a single 
Fourier search (3) same as previous, but hierarchic and do­
ing Fourier at the coarse level (4) hierarchic, search for 10 
rotations at 5 deg each (5) same as previous, 26 rotations at 
2 deg. The structure of the experiment was as follows: first, 
we register a given pair of images. Then, we misalign one 
images by known parameters TT, and the registration algo­

rithm is applied again . To measure the distance from the 
given to the recovered parameters TT, we have taken the 
mean distance after applying the two corresponding trans­
formations to all the non-void pixels of the creaseness im­
age, this is, those detecting vessels. We applied 100 differ­
ent transformations to four pairs of images, taken randomly 
within the range of translations of ±25% the size of the im­
age in pixels, rotations of ±25 deg and scaling ±1O%. Ta­
ble 1 shows the results on a PC Pentium at 350 MHz with 
256 M B of memory running under Linux. 

It is clear that a hierarchical approach is necessary to 
achieve some robustness, and that seeds propagate well the 
results of the search from the broad to the fine hierarchical 
levels. In addition to robustness, this approach reduces in 
one order of magnitude the search time. Please note that 
trial transformations are actually far more demanding than 
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1 
2 
3 
4 
5 

Image 1 Image 2 Image 3 
370 x 278 250 x 202 460 x 416 

Rec (%) Time Rec (%) Time Rec (%) Time 

6 4,6 16 1,7 9 
69 9,3 44 3,6 37 
94 61,4 98 44,3 93 
94 9,7 80 4,0 92 
97 10,8 83 5,0 93 

Table 1. Results of the registration algo­
rithm for 100 random trial transformations 
for 3 pairs of images: (1) Angiography­
retinography (2) Angiography-retinography 
with partial occlusion (3) Stereo angiogra­
phies. The Rec column represents the per­
centage of transformations successfully re­
covered (mean error lower than 5 pixels); the 
time is in seconds. Search methods as num­
bered are explained in section 3. 

6,1 
10,3 
66,2 
10,3 
11,2 

real cases: nonnal registrations have very little scaling, and 
translations and rotation angles are lower. W hen we per­
formed tests which did not include scaling to the same im­
ages, results were almost 100% successful. For all tests , the 
recovered transfonnations had a mean error lower than 0, 2 
pixels, which shows that our alignment measure is properly 
defined. 

We have registered successfully more than 100 pairs of 

images of several modalities: 49 stereo and 48 temporal 
pairs ( 1 year apart, size 460 x 416) of angiographies and 10 
green images to angiographies. Also, the same technique 
was used to register a temporal series of 140 SLO image 
which had been taken within 5 second, with a size of size 
512 x 512. All the slices of this series were registered to the 
same last slice because it was the one which showed better 
the vascular tree. We did not keep information between reg­
istration runs. The method ran for all images unmodified for 
all but two parameters, which are related to the creaseness 
extraction: the scale of the crease and the smoothness of the 
image, and it had a typical response time of 10 seconds. The 
visual inspection of the results, which was easy to perform 
because creases overlap when properly registered (see fig­
ure 3), was fully satisfactory for all the sets. For the tempo­
ral series, despite the poor contrast of the initial slice, where 
little could be seen, the registration was not successful for 
only four pails. As a future commercial application, we are 
setting the algorithm to reduce its computational charge and 
to decide automatically the success of a registration. Even­
tual sparse rejections are unimportant if we manage to make 
our application almost real-time. 



Figure 1. First and second columns: original 
images with creases superimposed in white. 
Third column: overlapping creases appear 
in white, non-overlapping in black and gray. 
From top to bottom: SLO-SLO, retinography 
to green, and retinography to retinography. 

4. Conclusions 

We have presented a novel method to register retinal im­
ages, with several advantages compared to others: a) re­
liable landmarks extraction using a creaseness operator b) 
cross-correlation for robustness against superfluous or miss­
ing landmarks c) hierarchical approach to speed up the re­

sults and improve robustness d) experiments include severe 
miss-registration conditions. 

Our method works fast and reliably for the four retinal 
modalities. We have explored its employment for register­
ing SLO temporal series, and first results have showed to 
be highly satisfactory. As a future work, we want to em­
ploy the vessels already extracted and registered to measure 

some clinically relevant indicators. Also, we are reducing 

the response time of the algorithm to make it suitable for 
clinical real-time applications. 
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