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Abstract

Automatic registration of multimodality images is an upcoming fieldesearch for medical
diagnosis and surgical planning. We propose a new method to extraot@ofeatures from different
modalities based on the extension to 3D of Rothe’s creases. Extracted imagssaias input for a
multiresolution search algorithm which brings them into agreement.
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1 Introduction

Image registration or matching attempts to solve the prolileat arises when two images taken at differ-
ent times, by different sensors or from different viewpsinteed to be compared [1]. One of the images
has to be transformed geometrically to bring it into agresinwégth the other one, taken as a reference.
Usually, the transform type and/or its parameters are wwknand must be estimated from the images
themselves.

The need to register images has arisen recently in the figleedical imaging, with the introduction of
3D modalities such as computed tomography (CT), magnetanemce (MR), digital x—ray angiography
(DSA), positron emission tomography (PET) and single pleotéssion computed tomography (SPECT).
Abnormalities observed in images of functional modalitide PET and SPECT, can be located more
precisely when they are registered with images of anatdmicalalities such as CT, and MR, of the
same patient [2, 10]. Thus a major application of image teien is in surgery and radiotherapy
planning. Several anatomic modalities need to be registererder to accurately localize a lesion and
better understand its 3D spatial relationship with neadmsgive structures like cerebral vessels [2].

In this paper we propose a method for the automatic registraif 3D CT and MR brain images.
It is based on the images themselves instead of relying arreadtreferences like skin markers or a
stereotactic frame. It aims specifically at intrasubjegfisgation of brain images, thus allowing the
assumption that a rigid transform exists between the twargek. This is an important issue because
the space of possible transforms and consequently thehsiraes are substantially reduced. Our method
is greatly inspired by the work of van den Elsen and collead®, 6]. They determine the parameters
of arigid transform through the correlation of CT ridge an®RMalley images in a hierarchical scheme.
In their work, ridges and valleys are computed by means ofn@igdization to 3D of the classical scale
spaceL,, operator. We propose to change this operator for a bettenitlefi and implementation of
ridges and valleys, the Rothe’s creases, whose study andrireptation was described in a previous
paper [5]. The aim of this article is to show that Rothe’s seza naturally extended to 3D, are suitable
for the problem of CT and MR volume registration and, furthere, that they exhibit both conceptual
and computational advantages over Ihg operator.

This paper is organized as follows. In section 2 we addresegiajor definitions of creases and their
extension to 3D. In section 3 we will explain a method for CH &fR volume registration by means
of 3D ridge and valley correlation. The next section presdahe obtained results. Finally, section 5
discusses conclusions and future work.



2 Creassesin 3D

Creases (ridges or valleys) have deserved special atteintigeosciences as relevant features of a to-
pographic relief. They are the points where water gathersitodown hill, in the case of valleys, and
similarly for ridges with the relief turned upside down. &irthe end of the last century researchers have
tried to characterize them mathematically. Two main nomvadent definitions were proposed relying
on the modelization of a topographic relief a2 height function. The first one, owing to De Saint—
Venant, identifies creases as points of extreme slope altegebcurve of the relief [8]. This condition
can also be found under equivalent formulations: heighteexa in the directions where the second di-
rectional derivative is also extreme, or loci of curvatuxérema along the relief level curves. Therefore,
the De Saint—\Venant'definition can be implemented localljze second one, due to R. Rothe, identi-
fies creases as parts of flowlines where other flowlines cgavit]. Flowlines are the integral curves
of the gradient vector field of the height function, that isrves which follow the gradient direction at
each point. Thus, a flowling(¢) lying on the image landscape can be characterized by the ordinary
differential equationi—i(t) = VL(x) wheret is a given parametrizatiof(t) = x andV L is the image
gradient. In fact, Rothe’s is the correct solution for thewdb“hydrologic” definition [3]. This charac-
terization gives rise to semi—local implementations: @&gence of flowlines have sense over a given
region of interest. Even though the De Saint—Venant defimiis not conceptually the right one, it is the
most widespread in the computer vision literature, dueedalst of its local character. Nevertheless, this
characterization implies second order derivatives todiewihether we are in a crease point. Conversely,
according to Rothe’s definition, we can take such a decisjoraltulating just the first order derivatives
needed to compute the gradient vector field.

A straightforward approximation of the De Saint—Venantsdition is achieves by selecting locations
where the curvature of level curves is high in absolute valtigis curvature is a tensorial invariant
quantity defined as[9]: _ LiLiLy; — LiL; Ly "

(LyLy)3/?

In order to avoid some pathological cases [3] wherfils to detect creases and also to get rid of
creases in background areasis multiplied by the gradient magnitude, = /LiL; =| VL|. The
resulting expression is the operafoy, = — Ly = (L;L;jL;j — L;L;Lj;)/(LiLg).

This approximation to the De Saint—Venant’'s condition hasrbproposed in the linear scale space
context. In it, the ill-posed problem of image derivativesnputation is regularized convolving the
image with the corresponding sampled gaussian derivalikes, for the first order derivatives ofreD
image we havd., (x;0) = L(x) x Go(x;0), a=1,...,n whereG(x;o) = (2mo2) /2 ¢ IxI?/20%,
The2D L, operator has been applied to multimodality medical imagthiag in [10] where, to work
with 3D MR and CT data, the geometric idea behind this operator wi@nded ta3D: in order to look
for ridges/valleys the authors minimized/maximized a fiort involving the whole set 08D second
order derivatives at each voxel of the images. This turnédmbave a high computational complexity.

In [5] we implemented Rothe’s definition to extract ridgesl amlleys from different types of images
(MR, range, intensity, angiography), showing the advasgagf this definition in th&D case. In this
paper, we want to investigate the suitability o3& extension of Rothe’s creases as features for multi-
modality medical image registration, instead of approxiores to the De Saint—Venant's definition. In
this way, we will be generalizing the correct character@abf crease points in a landscape. Moreover,
this definition involves first order derivatives to obtairease points and a further minor computation
step based on the local gradient behavior to distinguistvdest ridges and valleys, as we will explain
later in this section.

The right ridge/valley characterization, due to Rothentdies them as parts of flowlines where other
flowlines converge. In the discrete domain we translate tioparty of convergence as overlapping.

lWe use the Einstein summation convention and we denolg #se first derivative ofL. with respect to thé—th axis of
any adopted orthonormal coordinate system. Analogouslywill be the second order derivatives with respect toihHd and
j—th axes. See [9] for further explanations.



Therefore, the basic idea of our algorithm is as follows: wtwace the flowlines of th&D landscape,
counting how many of them pass through each voxel. At the éntieoprocess we will have abD
accumulated image which will tell us the degree of convergesrcreaseness at each voxel.

Once we have selected the desired scale of anabysige trace each flowline by selecting an unvisited
voxel x and then follow the gradient field in the two opposite direes. Thus, the curve progresses

according to df VL(£(s); o)
—(s+ds) =f(s) + = ds 2
ds | VL(£(s); o)) |
wheref(0) = x andds = 1 for one direction ands = —1 for the opposite. During this process

we need to calculat®¥’ L not only at points with integer coordinates but also at mintbetween. How-
ever, the expression fdr,, (x; o) applies only to integer coordinates. Hence, we approxirsabeoxel
derivatives by a trilinear interpolation of them at the e¢igbarest voxels. There are three reasons to stop
the process of curve tracing in a given direction: 1) the euraches a border of the image, 2) a critical
point (| VL] = 0), or 3) it starts to jump forward and backward from one sidéh®other of a singular
line of the gradient (among them, ridges and valleys). Tés évent can be checked by comparing the
gradient direction at consecutive points.

To trace curves from all the voxels of the image, would be ¥iEnge consuming. Instead, we assume
that once a flowline has passed through a voxel, another améngt from that voxel would be the
same flowline. This is an interpretation of the uniqguenes®rém for ordinary differential equations,
assuming that a point of an image curve has the volume of al.vd*ence, we limit the number of
computed curves to those which are needed in order to coeewkiole 3D image, making sure that
at least one curve passes through each voxel. Experimemtgedhthat we can obtain almost the same
creaseness information by this procedure as by tracingeswstarting from all the voxels.

Once the creaseness image has been computed, we have ®wlbeitier the creaseness is ridgeness
or valleyness, which depends on the convexity or concavitth® image with respect to its intensity
axis. This information is provided by the sign©fif x > 0 the voxel is classified as ridge, otherwise as
valley. For the sake of efficiency, we computdy aliteral implementation of the following equation:

VL(x;0) ) L0 Li(x;o)

k(x;0) = *div(m -

=Y e 3)
= Oz | VL(x;0) ||
which turns out to be more efficient in time and memory [4] tlitartensorial counterpart (1). This
is due to the fact that equation (3) avoids the use of secoder @mross—derivative$. o, L13, Log by
computing the divergence of the normalized gradient. Thévald/es of the normalized gradient in

equation 3 are approximated by centered finite differences.

3 Registration method

Any registration method has to specify several issues [J]th& image features from which the trans-
formation will be estimated (e.g. contours, intensitiesaracteristic points), 2) a similarity measure
between the reference image and the transformed one, iagsts "goodness” of that particular trans-
formation, and 3) the search space and search strategylyndmeespace of allowed transforms and how
to reach within it the location where the similarity measisrenaximum.

The skull is a structure visible both in CT and MR brain imag&hke signal produced by the bone
is strong in CT, but weak in MR due to the lack of mobile protoi®&een as a landscape, the strong
signal of the skull in CT forms a ridge, whereas in MR it becemaevalley (figure 1). Thus, pairs of
images displaying those features are suitable for the eroldf CT and MR registration. In particular,
we intend to find out the transformation parameters whictebalign CT ridgeness with MR valleyness
accumulated images. We have chosen as a similarity medmuoedss correlation of the former creases
images. Thus, the correlation will give a maximum when tredein the parameter space leads us to a
transformation which better aligns the images.



A rigid transformation models with reasonable accuracyghemetric difference between CT and
MR brain images because the skull does not deform . Rigigfoamations are characterized by three
rotation, translation and scaling parameters, which for@adimensional search space. The scaling pa-
rameters, however, are usually known because they can beeffom the resolution of the acquisition
devices. In 3D, an exhaustive search is an outer possidilig/to the high dimensionality of the search
space and because it implies executing two time-demandimgpgses for each point within it; trans-
formation and correlation. Therefore, a partial or heigisearch must be carried out. This poses a
second problem, the possibility of getting trapped into Galdnstead of global correlation maximum.
An approach to overcome these two problems is to search tlagneger space at multiple resolutions.
We handle multiple resolution by building two pyramids wia¢hne original CT and MR images are at
the bottom and each level is a sampled version of the prewbhalf resolution. We sample each image
by replacing every 8 neighbor voxels by a single one, the mari of their values. This sampling has
the advantage to prioritize interesting intensity feadupefore empty useless zones. In our algorithm,
the size of the bottom image 1828 x 128 x 128 while the size of the top i82 x 32 x 32, which is small
enough to be useful and still contains meaningful infororati

As a general rule, the search for the best transformatioact &vel is performed around the results
found in the previous one. We produce all the combinatiors stbps around each parameter (step size
0.05 rad. for rotations and 1 pixel for translations) ande¢bem using the cross correlation. The scores
are merged to the list of the 25 best of the level, which wilkdree the seeds for the next one. The
only exception is the top level, where the search is doneesthaly to take advantage of its reduced
dimensions §2 x 32 x 32). The output result is the best score from the list producenhfthe bottom
level (128 x 128 x 128).

4 Resaults

Original images were kindly provided by Dr. Petra van dereBlsThe size of MR image w&56 x 256 x

256 voxels with resolutior).9765 x 0.9765 x 1.0 mm/voxel and the CT image was6 x 256 x 100, with
resolution0.9375 x 0.9375 x 1.55mm/voxel. In order to perform registration experimentg @il image
was transformed to match the MR, and then both were scaleaifaiebolution to speed up computations.
Figure 2 shows several orthogonal planes of the originalsamodimulated images of MR and CT. Many
hidden features now become apparent, namely the skull im imoidalities and brain convolutions in
MR. Note that this accumulated image includes both ridgeaes valleyness. The input images of the
registration algorithm are shown in figure 3. We can see thiéys of MR closely match crests of CT
within the area of the skull.

The general idea of the experiment is as follows: given a GT'aMR image already brought into
agreement, we transform the CT with certain target parasétgd, 0. andi,,t,,t..Then, we try to
recover these parameters by registering the creases afatiefdrmed CT with the valleys of the orig-
inal MR. If we are able to do so, we presume that we can relilblyg the two original images into
agreement.

A perfect registration should recover parameters equdieédrput target parameters. Table 1 shows
some preliminary results of our experiments. The accuraaysially good for rotation parameters, but
not as good for translation. Extracting creases from an értages about 5 minutes, i.e., 2 minutes for
the completion of derivativeg, Ly, L3, 2 for the accumulation and 1 for the ridge/valley selectidhe
parameter search algorithm takes much more time, about Bhtmicomplete. Programs have been
executed in an IBM SP2 with 128MB RAM.



Target transformation Recovered transformation
0, 6, 6. ty  ty s 0, 6, 6. ty 1y t.
00 0.0 045 -80 50 0.0 0.0 00 045 80 6.0 0.0
-05 03 02 30 10 -80-05 03 02 3.0 1.0 -10.0
03 -03 03 -50 30 -20 0.3 -03 -025 -35 05 -1§
-0.2 00 01 70 40 -1.0-0.25 -0.05 0.05 8.0 4.0 -3

Table 1: Results of the registration algorithm. Angles areaidians and translation in pixels

The final aim of our work is to bring into agreement two imagé€® and MR, in order to display
their interesting features together.We have focused anthe selection of image features and a similarity
measure. We haven't, as yet, devoted much attention to tiraiaption of the search strategy.

5 Conclusions and future work

The results found so far suggest that our definition of cie#saseful for registration purposes. Further-
more, creases are extracted quickly and clearly show soatarés which seem to be lacking in some
other definitions. We believe them to be related to the bramvalutions and worthy of exploration.
However, the search algorithm is still slow and not very aata1 Clearly, it needs further improvement.
Future work will include the design of better adapted aldponis. Several possibilities are decoupling the
rotation and translation parameters in order to narrow daech space, genetic algorithms and surface-
based registration methods.
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Figure 2: Rows 1-3 show sagital, axial and coronal views.nfleft to right, each column displays a)
the original MR, b) accumulation image of MR c¢) original CTaticumulation image of CT
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Figure 3: above: MR valleys, below: CT ridges



