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Abstract

Automatic registration of multimodality images is an upcoming field of research for medical
diagnosis and surgical planning. We propose a new method to extract common features from different
modalities based on the extension to 3D of Rothe’s creases. Extracted images are used as input for a
multiresolution search algorithm which brings them into agreement.
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1 Introduction

Image registration or matching attempts to solve the problem that arises when two images taken at differ-
ent times, by different sensors or from different viewpoints need to be compared [1]. One of the images
has to be transformed geometrically to bring it into agreement with the other one, taken as a reference.
Usually, the transform type and/or its parameters are unknown and must be estimated from the images
themselves.

The need to register images has arisen recently in the field ofmedical imaging, with the introduction of
3D modalities such as computed tomography (CT), magnetic resonance (MR), digital x–ray angiography
(DSA), positron emission tomography (PET) and single photoemission computed tomography (SPECT).
Abnormalities observed in images of functional modalities, like PET and SPECT, can be located more
precisely when they are registered with images of anatomical modalities such as CT, and MR, of the
same patient [2, 10]. Thus a major application of image registration is in surgery and radiotherapy
planning. Several anatomic modalities need to be registered in order to accurately localize a lesion and
better understand its 3D spatial relationship with nearby sensitive structures like cerebral vessels [2].

In this paper we propose a method for the automatic registration of 3D CT and MR brain images.
It is based on the images themselves instead of relying on external references like skin markers or a
stereotactic frame. It aims specifically at intrasubject registration of brain images, thus allowing the
assumption that a rigid transform exists between the two volumes. This is an important issue because
the space of possible transforms and consequently the search time are substantially reduced. Our method
is greatly inspired by the work of van den Elsen and colleagues [10, 6]. They determine the parameters
of a rigid transform through the correlation of CT ridge and MR valley images in a hierarchical scheme.
In their work, ridges and valleys are computed by means of a generalization to 3D of the classical scale
spaceLvv operator. We propose to change this operator for a better definition and implementation of
ridges and valleys, the Rothe’s creases, whose study and implementation was described in a previous
paper [5]. The aim of this article is to show that Rothe’s creases, naturally extended to 3D, are suitable
for the problem of CT and MR volume registration and, furthermore, that they exhibit both conceptual
and computational advantages over theLvv operator.

This paper is organized as follows. In section 2 we address two major definitions of creases and their
extension to 3D. In section 3 we will explain a method for CT and MR volume registration by means
of 3D ridge and valley correlation. The next section presents the obtained results. Finally, section 5
discusses conclusions and future work.



2 Creases in 3D

Creases (ridges or valleys) have deserved special attention in geosciences as relevant features of a to-
pographic relief. They are the points where water gathers torun down hill, in the case of valleys, and
similarly for ridges with the relief turned upside down. Since the end of the last century researchers have
tried to characterize them mathematically. Two main non–equivalent definitions were proposed relying
on the modelization of a topographic relief as a2D height function. The first one, owing to De Saint–
Venant, identifies creases as points of extreme slope along alevel curve of the relief [8]. This condition
can also be found under equivalent formulations: height extrema in the directions where the second di-
rectional derivative is also extreme, or loci of curvature extrema along the relief level curves. Therefore,
the De Saint–Venant’definition can be implemented locally.The second one, due to R. Rothe, identi-
fies creases as parts of flowlines where other flowlines converge [7]. Flowlines are the integral curves
of the gradient vector field of the height function, that is, curves which follow the gradient direction at
each point. Thus, a flowlinef(t) lying on the image landscapeL can be characterized by the ordinary
differential equationdfdt (t) = rL(x) wheret is a given parametrization,f(t) = x andrL is the image
gradient. In fact, Rothe’s is the correct solution for the above “hydrologic” definition [3]. This charac-
terization gives rise to semi–local implementations: convergence of flowlines have sense over a given
region of interest. Even though the De Saint–Venant definition is not conceptually the right one, it is the
most widespread in the computer vision literature, due to the fact of its local character. Nevertheless, this
characterization implies second order derivatives to decide whether we are in a crease point. Conversely,
according to Rothe’s definition, we can take such a decision by calculating just the first order derivatives
needed to compute the gradient vector field.

A straightforward approximation of the De Saint–Venant’s condition is achieves by selecting locations
where the curvature of level curves is high in absolute value. This curvature is a tensorial invariant
quantity defined as1 [9]: � = LiLiLjj � LiLjLij(LkLk)3=2 (1)

In order to avoid some pathological cases [3] where� fails to detect creases and also to get rid of
creases in background areas,� is multiplied by the gradient magnitudeLw = pLkLk =k rL k . The
resulting expression is the operatorLvv = �Lw� = (LiLjLij � LiLiLjj)=(LkLk).

This approximation to the De Saint–Venant’s condition has been proposed in the linear scale space
context. In it, the ill–posed problem of image derivatives computation is regularized convolving the
image with the corresponding sampled gaussian derivative.Thus, for the first order derivatives of anD
image we haveL�(x;�) = L(x) � G�(x;�); � = 1; :::; n whereG(x;�) = (2��2)�n=2 e�kxk2=2�2 .
The2D Lvv operator has been applied to multimodality medical image matching in [10] where, to work
with 3D MR and CT data, the geometric idea behind this operator was extended to3D: in order to look
for ridges/valleys the authors minimized/maximized a function involving the whole set of3D second
order derivatives at each voxel of the images. This turned out to have a high computational complexity.

In [5] we implemented Rothe’s definition to extract ridges and valleys from different types of images
(MR, range, intensity, angiography), showing the advantages of this definition in the2D case. In this
paper, we want to investigate the suitability of a3D extension of Rothe’s creases as features for multi-
modality medical image registration, instead of approximations to the De Saint–Venant’s definition. In
this way, we will be generalizing the correct characterization of crease points in a landscape. Moreover,
this definition involves first order derivatives to obtain crease points and a further minor computation
step based on the local gradient behavior to distinguish between ridges and valleys, as we will explain
later in this section.

The right ridge/valley characterization, due to Rothe, identifies them as parts of flowlines where other
flowlines converge. In the discrete domain we translate the property of convergence as overlapping.1We use the Einstein summation convention and we denote asLi the first derivative ofL with respect to thei–th axis of
any adopted orthonormal coordinate system. Analogously,Lij will be the second order derivatives with respect to thei–th andj–th axes. See [9] for further explanations.



Therefore, the basic idea of our algorithm is as follows: we will trace the flowlines of the3D landscape,
counting how many of them pass through each voxel. At the end of the process we will have a3D
accumulated image which will tell us the degree of convergence orcreaseness at each voxel.

Once we have selected the desired scale of analysis,�, we trace each flowline by selecting an unvisited
voxel x and then follow the gradient field in the two opposite directions. Thus, the curve progresses
according to dfds(s+ �s) = f(s) + rL(f(s);�)k rL(f(s);�))k �s (2)

wheref(0) = x and�s = 1 for one direction and�s = �1 for the opposite. During this process
we need to calculaterL not only at points with integer coordinates but also at points in between. How-
ever, the expression forL�(x;�) applies only to integer coordinates. Hence, we approximatesubvoxel
derivatives by a trilinear interpolation of them at the eight nearest voxels. There are three reasons to stop
the process of curve tracing in a given direction: 1) the curve reaches a border of the image, 2) a critical
point (k rLk= 0), or 3) it starts to jump forward and backward from one side tothe other of a singular
line of the gradient (among them, ridges and valleys). This last event can be checked by comparing the
gradient direction at consecutive points.

To trace curves from all the voxels of the image, would be verytime consuming. Instead, we assume
that once a flowline has passed through a voxel, another one starting from that voxel would be the
same flowline. This is an interpretation of the uniqueness theorem for ordinary differential equations,
assuming that a point of an image curve has the volume of a voxel. Hence, we limit the number of
computed curves to those which are needed in order to cover the whole3D image, making sure that
at least one curve passes through each voxel. Experiments showed that we can obtain almost the same
creaseness information by this procedure as by tracing curves starting from all the voxels.

Once the creaseness image has been computed, we have to decide whether the creaseness is ridgeness
or valleyness, which depends on the convexity or concavity of the image with respect to its intensity
axis. This information is provided by the sign of�: if � > 0 the voxel is classified as ridge, otherwise as
valley. For the sake of efficiency, we compute� by aliteral implementation of the following equation:�(x;�) = �div� rL(x;�)k rL(x;�)k � = � 3Xi=1 @@xi Li(x;�)k rL(x;�)k (3)

which turns out to be more efficient in time and memory [4] thanits tensorial counterpart (1). This
is due to the fact that equation (3) avoids the use of second order cross–derivativesL12; L13; L23 by
computing the divergence of the normalized gradient. The derivatives of the normalized gradient in
equation 3 are approximated by centered finite differences.

3 Registration method

Any registration method has to specify several issues [1] : 1) the image features from which the trans-
formation will be estimated (e.g. contours, intensities, characteristic points), 2) a similarity measure
between the reference image and the transformed one, assessing the ”goodness” of that particular trans-
formation, and 3) the search space and search strategy, namely, the space of allowed transforms and how
to reach within it the location where the similarity measureis maximum.

The skull is a structure visible both in CT and MR brain images. The signal produced by the bone
is strong in CT, but weak in MR due to the lack of mobile protons. Seen as a landscape, the strong
signal of the skull in CT forms a ridge, whereas in MR it becomes a valley (figure 1). Thus, pairs of
images displaying those features are suitable for the problem of CT and MR registration. In particular,
we intend to find out the transformation parameters which better align CT ridgeness with MR valleyness
accumulated images. We have chosen as a similarity measure the cross correlation of the former creases
images. Thus, the correlation will give a maximum when the search in the parameter space leads us to a
transformation which better aligns the images.



A rigid transformation models with reasonable accuracy thegeometric difference between CT and
MR brain images because the skull does not deform . Rigid transformations are characterized by three
rotation, translation and scaling parameters, which form a9-dimensional search space. The scaling pa-
rameters, however, are usually known because they can be deduced from the resolution of the acquisition
devices. In 3D, an exhaustive search is an outer possibilitydue to the high dimensionality of the search
space and because it implies executing two time-demanding processes for each point within it: trans-
formation and correlation. Therefore, a partial or heuristic search must be carried out. This poses a
second problem, the possibility of getting trapped into a local instead of global correlation maximum.
An approach to overcome these two problems is to search the parameter space at multiple resolutions.
We handle multiple resolution by building two pyramids where the original CT and MR images are at
the bottom and each level is a sampled version of the previousat half resolution. We sample each image
by replacing every 8 neighbor voxels by a single one, the maximum of their values. This sampling has
the advantage to prioritize interesting intensity features before empty useless zones. In our algorithm,
the size of the bottom image is128� 128� 128 while the size of the top is32� 32� 32, which is small
enough to be useful and still contains meaningful information.

As a general rule, the search for the best transformation at each level is performed around the results
found in the previous one. We produce all the combinations of5 steps around each parameter (step size
0.05 rad. for rotations and 1 pixel for translations) and score them using the cross correlation. The scores
are merged to the list of the 25 best of the level, which will become the seeds for the next one. The
only exception is the top level, where the search is done exhaustively to take advantage of its reduced
dimensions (32 � 32 � 32). The output result is the best score from the list produced from the bottom
level (128 � 128 � 128).

4 Results

Original images were kindly provided by Dr. Petra van den Elsen. The size of MR image was256�256�256 voxels with resolution0:9765�0:9765�1:0 mm/voxel and the CT image was256�256�100, with
resolution0:9375�0:9375�1:55mm/voxel. In order to perform registration experiments, the CT image
was transformed to match the MR, and then both were scaled at half resolution to speed up computations.
Figure 2 shows several orthogonal planes of the original andaccumulated images of MR and CT. Many
hidden features now become apparent, namely the skull in both modalities and brain convolutions in
MR. Note that this accumulated image includes both ridgeness and valleyness. The input images of the
registration algorithm are shown in figure 3. We can see that valleys of MR closely match crests of CT
within the area of the skull.

The general idea of the experiment is as follows: given a CT and a MR image already brought into
agreement, we transform the CT with certain target parameters �x,�y,�z and tx,ty,tz.Then, we try to
recover these parameters by registering the creases of the transformed CT with the valleys of the orig-
inal MR. If we are able to do so, we presume that we can reliablybring the two original images into
agreement.

A perfect registration should recover parameters equal to the input target parameters. Table 1 shows
some preliminary results of our experiments. The accuracy is usually good for rotation parameters, but
not as good for translation. Extracting creases from an image takes about 5 minutes, i.e., 2 minutes for
the completion of derivativesL1; L2; L3, 2 for the accumulation and 1 for the ridge/valley selection. The
parameter search algorithm takes much more time, about 3 hours, to complete. Programs have been
executed in an IBM SP2 with 128MB RAM.



Target transformation Recovered transformation�x �y �z tx ty tz �x �y �z tx ty tz
0.0 0.0 0.45 -8.0 5.0 0.0 0.0 0.0 0.45 8.0 6.0 0.0
-0.5 0.3 0.2 3.0 1.0 -8.0 -0.5 0.3 0.2 3.0 1.0 -10.0
0.3 -0.3 0.3 -5.0 3.0 -2.0 0.3 -0.3 -0.25 -3.5 0.5 -1.5
-0.2 0.0 0.1 7.0 4.0 -1.0 -0.25 -0.05 0.05 8.0 4.0 -3.0

Table 1: Results of the registration algorithm. Angles are in radians and translation in pixels

The final aim of our work is to bring into agreement two images of CT and MR, in order to display
their interesting features together.We have focused only on the selection of image features and a similarity
measure. We haven’t, as yet, devoted much attention to the optimization of the search strategy.

5 Conclusions and future work

The results found so far suggest that our definition of creases is useful for registration purposes. Further-
more, creases are extracted quickly and clearly show some features which seem to be lacking in some
other definitions. We believe them to be related to the brain convolutions and worthy of exploration.
However, the search algorithm is still slow and not very accurate. Clearly, it needs further improvement.
Future work will include the design of better adapted algorithms. Several possibilities are decoupling the
rotation and translation parameters in order to narrow the search space, genetic algorithms and surface-
based registration methods.
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Figure 1: a) sagital plane of MR b) same plane of CT c) CT skull in white on the MR plane

Figure 2: Rows 1-3 show sagital, axial and coronal views. From left to right, each column displays a)
the original MR, b) accumulation image of MR c) original CT d)accumulation image of CT

Figure 3: above: MR valleys, below: CT ridges


