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Abstract. Multi-person tracking can be exploited in applications such
as driver assistance, surveillance, multimedia and human-robot interac-
tion. With the help of human detectors, particle filters offer a robust
method able to filter noisy detections and provide temporal coherence.
However, some traditional problems such as occlusions with other tar-
gets or the scene, temporal drifting or even the lost targets detection are
rarely considered, making the systems performance decrease. Some au-
thors propose to overcome these problems using heuristics not explained
and formalized in the papers, for instance by defining exceptions to the
model updating depending on tracks overlapping. In this paper we pro-
pose to formalize these events by the use of a state-graph, defining the
current state of the track (e.g., potential , tracked , occluded or lost) and
the transitions between states in an explicit way. This approach has the
advantage of linking track actions such as the online underlying models
updating, which gives flexibility to the system. It provides an explicit
representation to adapt the multiple parallel trackers depending on the
context, i.e., each track can make use of a specific filtering strategy,
dynamic model, number of particles, etc. depending on its state. We im-
plement this technique in a single-camera multi-person tracker and test
it in public video sequences.

1 Introduction

Human detection and tracking has been one of the most relevant research topics
in computer vision for almost two decades. Nowadays, it is still an important
subject of investigation due to the difficulty to develop techniques capable of
reliably performing this task in many contexts. Humans are one of the most
challenging classes in computer vision: they are dynamic, deformable, unpre-
dictable, their variability in size and clothings is big and they can be affected
by changing illumination. Furthermore, they can often be occluded, appear in
groups or isolated. Some of the applications of human detection and tracking
are surveillance [1], advanced driver assistance systems [2], human-robot inter-
action [3], etc. All these applications require multi-target detection and tracking
of people from single camera, which is the focus of this paper.



The detection is defined as the process of providing information about objects
in images in a frame-by-frame basis, hence the task of a detector if mainly
restricted to just localizing the objects. The tracking identifies and follows these
objects through a sequence of images, enlarging the tasks to the initialization
of tracks, updating their state, managing the occlusions, reinitializing the tracks
after occlusions, data association, etc. During the last decades, Particle Filters [4,
5] have become popular in the visual tracking literature thanks to their capability
to provide a simple while robust framework to tackle some tracking process.
Nowadays, the most successful approaches make use of the so-called tracking-
by-detection approach, which takes advantage of the output of an object detector
to (re)initialize and provide evidences through the frames [6, 7].

In spite of the plethora of tracking strategies, which are more or less efficient
depending on the context, few papers address traditional difficulties such as oc-
clusions with other targets or with the scene, temporal drifts of the tracks, lost
tracks, etc., which can lead to typical tracking problems like target hijacking or
track model drifting. These problems not only decrease the system performance
but also result in misinterpretations of the scene. The traditional approach is to
manage occlusions or lost targets by heuristics not detailed in the papers. For
instance, in the well-known approach in [6], the authors just update the clas-
sifiers when tracks are not overlapped and terminate tracks with no associated
detections during several frames. In this case, an optimization algorithm that
makes use of an online classifier, a gait function and the particles position, is
used to match the current detections and tracks at each frame without explicitly
reasoning about the state of the targets. One of the approaches adapting the
tracker strategies to occlusions is presented in [8], in which the authors propose
different trackers for a multi-view object tracking system. Depending on whether
the targets are viewed from different cameras or not and on whether they are
isolated or not, the algorithms can be: Interactively Distributed Multi-Object
Tracking, Bayesian Multiple Camera Tracking or Multiple Independent Particle
Filter. However, apart from being addressed specifically to multi-camera systems,
it does only exploit geometrical cues such as isolation and camera projection,
not taking advantage of the possible cues that the target model can provide in a
single camera. In [9], Zhou et al. propose an event analysis stage that identifies
presence of targets in the scene and inter-object occlusion. In this case, contrary
to our proposal, this reasoning is made as a posterior process to the filtering to
provide high-level event information.

Based on a Particle Filter tracker, we propose a novel approach for multi-
person tracking that defines a state for each track (potential , tracked , occluded
or lost), represented in a graph. The nodes of a graph are used to depict the
states (context), which define a specific tracking strategy, while the arcs repre-
sent the conditions that trigger the state transitions. As conditions we employ
a traditional bounding box overlapping approach to detect non-isolated tracks,
together with a Kalman Filter and Generalized Likelihood Ratio Test [10] to
detect tracker failures. The benefits of this state-graph compared to the conven-
tional implementation are clear. It provides an explicit representation to adapt



the multiple parallel trackers to the context, i.e., each track could make use of a
specific filtering strategy, dynamic model, number of particles, sampling strategy,
etc. depending on its state. For example, it allows to use different simultaneous
filtering approaches like Condensation and ICondensation in the same scene, or
to restrict the update of the track model to non-occluded targets, which am-
mends the problem of model drifting but it is still more flexible than fixing a
constant model. Furthermore, recent approaches dealing with occlusions [11] or
tracker failures [12] can be embedded in the framework. We test the tracker com-
bined with a HOG-SVM detector [13] in public sequences with multiple persons
in real situations.

The structure of the manuscript is as follows. Section 2 recalls the conven-
tional particle filtering algorithm. Section 3 presents our state-based approach.
We first define the states of the graph, with the associated actions and adapted
filtering strategy, and then describe the transition conditions. The experimental
results are presented in Section 4. Finally, the conclusions and perspectives are
summarized in Section 5.

2 Original Particle Filtering Formulation

In this section we first recall the main concepts and components of a conventional
ICondensation particle filter [14]. Let us define a set of N particles representing
hypotheses of the position and scale of a person (track). Each particle has an
associated state vector x(i)

k =< x, y, s, w >, where i ∈ 1, . . ., N is the particle
index, x,y,s are image coordinates and scale of the track bounding box at frame
k, and w its weight. When a track is initialized at k = 0, we set w

(i)
k = 1/N

and draw particles according to a prior p0(x). Next, at each frame a process of
prediction and correction is carried out following the next steps:

1. Prediction (Importance function), which propagates particles from k−1 to k
according to dynamics from a predefined probability density function (pdf)
p and/or measurements zk (from current image), defined as:

q(x(i)
k |x(i)

k−1, zk) = απ(x(i)
k |zk) + βp(x(i)

k |x(i)
k−1) + (1 − α − β)p0(x

(i)
k ) , (1)

where π(x(i)
k |zk) ∈ [0..1] corresponds to an intermittent image cue (e.g., a

human detector [13]), p(x(i)
k |x(i)

k−1) is the dynamics pdf and p0 is the prior.
α, β ∈ [0..1] represent the proportion of particles according to observations
and dynamics, respectively.

2. Correction (Weighting), which assigns a weight w
(i)
k to each particle accord-

ing to:

w
(i)
k ∝ w

(i)
k−1

p(zk|x(i)
k )p(x(i)

k |x(i)
k−1)

q(x(i)
k |x(i)

k−1, zk)
, (2)

where p(zk|x(i)
k ) is the likelihood of the measurement zk with respect to the

particle state x(i)
k .

3. Resampling, in which the particles are redrawn according to w
(i)
k .



3 State-Driven Particle Filtering

In any Particle Filtering approach, the propagation and weighting is made inde-
pendently of the state of the track, e.g., the particles in an occluded track are
propagated according to the same equation as in a non-occluded one. This can
lead to an inefficient particles distribution and even a target loss if the target
does not re-appear as the dynamics predict, which often derive in the aforemen-
tioned problems enumerated in Section 1. We propose a three-noded graph to
maintain the state of the tracks, with an additional one for the detections that
can potentially become tracks, that modulates the strategy and parameters of
the filtering.

Figure 1 illustrates the model. Each node defines a track state (potential ,
tracked , occluded and lost) while each arc defines the conditions to move from
one state to another (i.e., tracks overlapping or confidence).
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Fig. 1. Proposed state-graph.

In the following subsections we detail the state-actions and the state-transitions
proposed in our graph.



3.1 State-actions (nodes)

The track state is represented as a node, which defines the corresponding actions
on the tracking process of the specific target. For example, with this approach a
tracked track can make use only of dynamics in the importance function without
taking into account the detections (setting α = 0, β = 1 in Equation (1) as in
Condensation [4]), while an occluded track can depend both on detections and
dynamics (i.e., α, β �= 0 in Equation (1) as in ICondensation [5]). In terms
of implementation this can be represented by a weighted importance function
that uses different sampling methods, which are adjusted for each state. As can
be seen, the state-graph provides an explicit representation capable of working
with two different trackers in the same image depending on the context. Figure
2 illustrates the different tracker strategies, which depend on the state of the
track.

Potential Track. A potential track is created for each detection that does not
match any of the current tracks. The matching is made if the overlapping between
two detections in two consecutive frames exceeds a given threshold, and a counter
is used to store the number of frames a track has been in this state. After Foverlap

frames in which the potential track matches a detection, it is upgraded to tracked .
On the contrary, if the track stands for Fpotential frames as potential without
enough matching detections, it is killed. Of course, this procedure is suited for
the standard tracking test videos focused on surveillance or driver assistance.
For other kind of applications, this procedure must be adapted to the specific
video frame rate and the object detector performance of each case.

Tracked Track. Once a track has earned the state tracked , it can not return
to the potential one, so from this frame a track model is used (initialized at this
frame) and a complete particle filter process is carried out. The filtering process
for this state is as follows:

– Importance Function: It is completely based on dynamics. In our pro-
posal, we set α = 0 and

p(x(i)
k |x(i)

k−1) = x(i)
k−1 + R(x(i)

k−1, Σdyn) (3)

is used, where R is a Gaussian random walk function with covariance matrix
Σdyn centered at x(i)

k−1.
– Weighting Function: The particles are weighted according to p(zk|x(i)

k ),
i.e., the likelihood of the track model applied to their current position and
scale in the image.

– Data Association: Explicit and carried out after the importance function
and weighting. It matches the current detections with the tracked tracks,
aimed at both discarding these detections to be used by potential , occluded
or lost tracks and to compute the scale of the track as the average of the last



three detections. We construct a distance matrix with each tracked track t
and each detection d using the equation:

Cost(t, d) = p(d|t)·N
(

1
N

N∑
i=0

dist(x(i)
k , d); 0, σ2

dist

)
, (4)

where p(d|t) is the matching probability of the track t model applied to d (see
Sect. 4); dist(x(i)

k , d) is the Euclidean distance between a particle x(i)
k from t

and the center of the detection d; and N is a Gaussian function with mean
0 and variance σ2

dist. This cost function rewards detections that are similar
to the track model and near the track particles. Finally, an optimization
algorithm like Munkres or a greedy approach [6] is used to compute the best
matching.
The data association is applied according to a state-based preference, i.e.,
first tracked , then occluded and finally lost tracks (as will be seen, their as-
sociation is implicit). This approach is based on the assumption that tracked
tracks are independent from detections, so the process is focused on explain-
ing the scene status as better as possible with the last known data. Then,
the algorithm tries to explain the unmatched detections with the occluded
or lost tracks, whose confidence is lower than the tracked ones.

Occluded Track. An occluded track is a target which is significantly occluded
by another one and whose track confidence decreases (these concepts will be
detailed later in Sect. 3.2). In this case, the filtering is as follows:

– Importance Function: We draw particles in all the near unmatched de-
tections weighted by their distance to the track (β = 0 in Equation (1)):

q(x(i)
k |zk) = π(x(i)

k |zk) (5)

If there are not unmatched detections in the current frame, the particles are
not sampled and the state is not changed.

– Weighting Function: The same equation as in tracked is used.
– Data Association: In this case, the association is implicit, i.e., no optimiza-

tion is made. We assume that each occluded track provides the best possible
matching with a detection, and we just make the matches track-detection
according to the highest weighted particle. If a detection is matched by two
occluded tracks, just the one with highest weight is taken while the other is
left as unmatched.

Lost Track. A lost track is often the result of an occlusion with the scene or
a sudden change in its appearance, which prevents the model to be updated on
time, which make the maximum likelihood decrease suddenly. In this case, as
explained later, the track is isolated from other tracks in the scene.

As importance function in this case we use the same as in occluded , however,
the Gaussian used to draw the particles in the nearby detections is bigger since



we understand that an occlusion is local while a lost track can be found anywhere
in the image if the sufficient number of frames has passed (e.g., could be occluded
by a vehicle or street furniture) and appear in the other side of the image. In
the case of weighting function and data association, we use the same as in the
occluded state.

occluded tracked 

track occlusion

new detection new detection

track lost

new detections

tracked lost tracked 

Unmatched detections Random Walk Unmatched detectionsRandom Walk

Fig. 2. Example of a track (blue) through the different states. Note: black boxes rep-
resent detections, blue, red and yellow circles represent objects. The figure can be seen
as evolving from left to right.

3.2 State-transitions (arcs)

In order to go from one state to another, state-transitions depend on conditions
of the tracks. In our proposal, the conditions are based on the classifier confidence
output of each track and on the overlapping between tracks.

Classifier Matching. The classifier confidence of each track is computed as
the maximum likelihood of its particles C(xk|zk) =max(w(i)

k ) ∀i ∈ 0, . . . , N . In
order to detect track model failures, we propose to use a 1D Kalman Filter and
the Generalized Likelihood Ratio Test (GLRT) to filter the confidence of an
online classifier (Sect. 4). The GLRT is a statistical test used to compare two
models that extends the Neyman-Pearson lemma [15] for hypotheses testing in
a sub-optimal way. It involves the computation of the ratio lH1

lH0
, where lH0 is the

log-likelihood of a null hypothesis and lH1 is the log-likelihood of an alternative
one. Whenever this ratio is greater than a threshold defined a priori, the test
fails. In [10], Willsky and Jones proposed to filter the residual of a KF, i.e.,
the difference between actual measure and its prediction, with the GLRT to
determine if a change in a signal has occurred.

In our proposal we set H0 as no confidence change and H1 as a confidence
decrease. In Fig. 3 we illustrate the behaviour of the confidences in two tracks,
one occluded and another non-occluded. As can be seen, depending on the state
of the Kalman Filter, the GLRT is able to detect if a jump has been produced
in the confidence signal.
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Fig. 3. In black, the confidence of a color model in a non-occluded person along 15
frames. In blue, the confidence of an occluded person. At frame 8, the GLRT success-
fully detects the decrease in the confidence.

Isolated Track. The isolated condition is computed by using the Jaccard over-
lapping criterion between two tracks:

J(t0, t1) =
|t0∩t1|
|t0∪t1| > JT (6)

where J(t0, t1) ∈ [0, 1], t0 and t1 are the areas of two given tracks and JT is a
fixed overlapping threshold (e.g., 0.5).

4 Experimental Results

In this section we evaluate the performance of the proposed approach in com-
parison with the original not state-based version. The public datasets used
are TUD-Crossing, TUD-Campus4 [16], with 201 and 71 frames, respectively;
and PETS2009-S2L1 View15 with 795 frames. Video results can be found at
http://www.cvc.uab.es/˜dgeronimo/projects/ACIVS12.

The detector used as input is the well-known HOG/LinearSVM person de-
tector by Dalal and Triggs [13], which is a current standard in the field. The
particle filter uses 150 particles in the TUD sequences and 300 the PETS, all
in a distributed filtering fashion. The online model of the track is based on a
rgI color histogram of the torso region quantized into 16 bins per channel (in
our experiments rgI works slightly better than RGB color space). The likelihood
is based on the histograms difference, assumed to be normally distributed. As
evaluation metrics, we make use of CLEARMOT [18], which defines an evalua-

4 http://www.mis.tu-darmstadt.de/node/382
5 http://www.cvg.rdg.ac.uk/PETS2009/ (groundtruth annotations from [17])



tion protocol specific for multi-object tracking in terms of precision (MOTP6)
and accuracy (MOTA7). The matching between detections and annotations is
defined as in Eq. (6) with JT > 0.5. For the sake of completeness, in addition to
the CLEARMOT metrics, we also specify the number of total identity switches
a long a full track (not only to the consecutive ones in the original formulation),
the false negative rate FNR and the false positives per image FPPI.

Table 4 summarizes the performance of the system in the video sequences.
As can be seen, the precision of both approaches is similar given that always
a target is detected, it is based on the same detector and the likelihood model
is the same in both cases. On the contrary, in the case of the accuracy, the
state-driven approach improves the results AROUND A 7% in all cases. The
FNR improvement is around 3 − 5% depending on the sequence; and the FPPI
significantly improves (11 − 28%), this latter thanks to the reduction in the
number of track drifts. In the case of ID switches, the improvement can be
clearly appreciated in TUD-Crossing, in which there are many pedestrians and
occlusions along the sequence. The improvement in FPPI is also significant in
all the sequences.

Dataset MOTP MOTA FNR FPPI IDSw.
TUD Crossing (Original) 77.8% 51.1% 36.7% 0.61 0 (12)
TUD Crossing (State-based) 77.7% 58.8% 33.7% 0.37 0 (5)
TUD Campus (Original) 78.6% 27.1% 64.9% 0.34 0 (1)
TUD Campus (State-based) 76.0% 34.8% 59.9% 0.23 0 (0)
PETS2009-S2L1 (Original) 73.9% 43.5% 48.0% 0.49 2 (40)
PETS2009-S2L1 (State-based) 75.0% 51.1% 45.2% 0.21 0 (27)

Table 1. Performance comparison between the traditional approach (Original) and
our proposal (State-based). In parentheses, global ID switches for full tracks.

Fig. 4(a) illustrates the evolution of a track from potential to tracked (the
brighter the particle, the higher its weight). Blue bounding boxes correspond
to tracks (with their associated numeric id at the corner) and yellow boxes
correspond to detections. Fig. 4(b) shows the algorithm behaviour after an inter-
person occlusion, in which the foreground person is labeled as tracked while the
person in the background is labeled as occluded. Fig. 4(c) shows an occlusion
with an object of the scene.

Fig. 5 shows a detailed reinitialization process after an occlusion with an
undetected person. During the occlusion, the algorithm unsuccessfully tries to

6 MOTP=
∑

i,t dsti
t∑

t ct
, where dsti

t is the Euclidean distance between the annotation i and
the corresponding detection and ct is the number of matches, all in frame t.

7 MOTA= 1 −
∑

t mt−fpt−mmet∑
t g

, where mt are object misses, fpt are false positives,
mmet are missmatches and gt are groundtruth objects at frame t.



(a) potential and tracked track

(b) occluded track

(b) lost track

Fig. 4. Examples of the tracker behaviour (a) in TUD-Crossing and (b,c) in PETS2009.
Track particles in sequence (b) are not shown for visualization clarity. Note: detections
in yellow, tracks in blue, potential track in dashed blue.

match the lost track with a near unmatched detection. After the occlusion, a new
detection matches the online model and the track is reinitialized maintaining the
same id. Without the proposed approach, a new track (with a new id) is created
for the new detection resulting in an identity switch (counted in our full track
switch criterion noted inside the parentheses in Table 4). These experiments
demonstrate that even with simple components our proposal already provides
improvement.

The errors in the tracking are mainly a result of the simple online track model
used (based on the color histogram of the torso). For example, when persons are
very similar in clothes and shapes, lost or occluded tracks can be misassigned
after reinitialization. In addition, when the tracks change in scale, particles at
different scales but centered in the torso region are equally weighted, leading
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Fig. 5. Detailed reinitialization process of a track after an occlusion with an undetected
person.

to a wrong track scale estimation. These problems could be ammended by a
more complex observation model exploiting shape in addition to color [6]. Other
improvements such as a more elaborated occlusion manager [17, 11] or track
failure detector [12] are likely improve the overall performance.

Finally, it is worth to mention that our proposal is not limited to distributed
particle filters. In fact, it can be potentially applied in a centralized filtering
approach by including the track state and the potential matched detections in
the state vector, and in other filters such as Kalman or Mean-shift by adapting
the actions and transitions of the state-graph.

5 Conclusion

In this paper we have presented a novel approach based on a state-graph able to
deal with some problems of tracking like hijacking, occlusions or drifting. The
main contribution is the formalization of the target state in a graph, with asso-
ciated parameters and actions in the nodes and track-based conditions as node
transitions. In our implementation, we demonstrate the benefits of our approach
by switching between filtering strategies depending on the target status. The ex-
perimental results have proven that this representation is capable of overcoming
the aforementioned problems in realistic complex video sequences.

As future work, in addition to improving the current components of the sys-
tem as explained in the previous section, we plan to use state-dependent model
cues (e.g., more complex appearance or color models if the track is lost), balance
the number of particles according to the state, and perform graph interactions
in order to provide a more robust state estimation.
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