toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Felipe Codevilla; Matthias Muller; Antonio Lopez; Vladlen Koltun; Alexey Dosovitskiy edit   pdf
doi  openurl
  Title End-to-end Driving via Conditional Imitation Learning Type Conference Article
  Year 2018 Publication IEEE International Conference on Robotics and Automation Abbreviated Journal  
  Volume Issue Pages 4693 - 4700  
  Keywords  
  Abstract (down) Deep networks trained on demonstrations of human driving have learned to follow roads and avoid obstacles. However, driving policies trained via imitation learning cannot be controlled at test time. A vehicle trained end-to-end to imitate an expert cannot be guided to take a specific turn at an upcoming intersection. This limits the utility of such systems. We propose to condition imitation learning on high-level command input. At test time, the learned driving policy functions as a chauffeur that handles sensorimotor coordination but continues to respond to navigational commands. We evaluate different architectures for conditional imitation learning in vision-based driving. We conduct experiments in realistic three-dimensional simulations of urban driving and on a 1/5 scale robotic truck that is trained to drive in a residential area. Both systems drive based on visual input yet remain responsive to high-level navigational commands. The supplementary video can be viewed at this https URL  
  Address Brisbane; Australia; May 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICRA  
  Notes ADAS; 600.116; 600.124; 600.118 Approved no  
  Call Number Admin @ si @ CML2018 Serial 3108  
Permanent link to this record
 

 
Author Cesar de Souza; Adrien Gaidon; Yohann Cabon; Antonio Lopez edit   pdf
doi  openurl
  Title Procedural Generation of Videos to Train Deep Action Recognition Networks Type Conference Article
  Year 2017 Publication 30th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2594-2604  
  Keywords  
  Abstract (down) Deep learning for human action recognition in videos is making significant progress, but is slowed down by its dependency on expensive manual labeling of large video collections. In this work, we investigate the generation of synthetic training data for action recognition, as it has recently shown promising results for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation and other computer graphics techniques of modern game engines. We generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for ”Procedural Human Action Videos”. It contains a total of 39, 982 videos, with more than 1, 000 examples for each action of 35 categories. Our approach is not limited to existing motion capture sequences, and we procedurally define 14 synthetic actions. We introduce a deep multi-task representation learning architecture to mix synthetic and real videos, even if the action categories differ. Our experiments on the UCF101 and HMDB51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance, significantly
outperforming fine-tuning state-of-the-art unsupervised generative models of videos.
 
  Address Honolulu; Hawaii; July 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes ADAS; 600.076; 600.085; 600.118 Approved no  
  Call Number Admin @ si @ SGC2017 Serial 3051  
Permanent link to this record
 

 
Author Karel Paleček; David Geronimo; Frederic Lerasle edit  doi
isbn  openurl
  Title Pre-attention cues for person detection Type Conference Article
  Year 2012 Publication Cognitive Behavioural Systems, COST 2102 International Training School Abbreviated Journal  
  Volume Issue Pages 225-235  
  Keywords  
  Abstract (down) Current state-of-the-art person detectors have been proven reliable and achieve very good detection rates. However, the performance is often far from real time, which limits their use to low resolution images only. In this paper, we deal with candidate window generation problem for person detection, i.e. we want to reduce the computational complexity of a person detector by reducing the number of regions that has to be evaluated. We base our work on Alexe’s paper [1], which introduced several pre-attention cues for generic object detection. We evaluate these cues in the context of person detection and show that their performance degrades rapidly for scenes containing multiple objects of interest such as pictures from urban environment. We extend this set by new cues, which better suits our class-specific task. The cues are designed to be simple and efficient, so that they can be used in the pre-attention phase of a more complex sliding window based person detector.  
  Address Dresden, Germany  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-34583-8 Medium  
  Area Expedition Conference COST-TS  
  Notes ADAS Approved no  
  Call Number Admin @ si @ PGL2012 Serial 2148  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate; Daniel Kondermann edit   pdf
url  doi
isbn  openurl
  Title When Is A Confidence Measure Good Enough? Type Conference Article
  Year 2013 Publication 9th International Conference on Computer Vision Systems Abbreviated Journal  
  Volume 7963 Issue Pages 344-353  
  Keywords Optical flow, confidence measure, performance evaluation  
  Abstract (down) Confidence estimation has recently become a hot topic in image processing and computer vision.Yet, several definitions exist of the term “confidence” which are sometimes used interchangeably. This is a position paper, in which we aim to give an overview on existing definitions,
thereby clarifying the meaning of the used terms to facilitate further research in this field. Based on these clarifications, we develop a theory to compare confidence measures with respect to their quality.
 
  Address St Petersburg; Russia; July 2013  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-39401-0 Medium  
  Area Expedition Conference ICVS  
  Notes IAM;ADAS; 600.044; 600.057; 600.060; 601.145 Approved no  
  Call Number IAM @ iam @ MGH2013a Serial 2218  
Permanent link to this record
 

 
Author Diego Cheda; Daniel Ponsa; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Pedestrian Candidates Generation using Monocular Cues Type Conference Article
  Year 2012 Publication IEEE Intelligent Vehicles Symposium Abbreviated Journal  
  Volume Issue Pages 7-12  
  Keywords pedestrian detection  
  Abstract (down) Common techniques for pedestrian candidates generation (e.g., sliding window approaches) are based on an exhaustive search over the image. This implies that the number of windows produced is huge, which translates into a significant time consumption in the classification stage. In this paper, we propose a method that significantly reduces the number of windows to be considered by a classifier. Our method is a monocular one that exploits geometric and depth information available on single images. Both representations of the world are fused together to generate pedestrian candidates based on an underlying model which is focused only on objects standing vertically on the ground plane and having certain height, according with their depths on the scene. We evaluate our algorithm on a challenging dataset and demonstrate its application for pedestrian detection, where a considerable reduction in the number of candidate windows is reached.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-0587 ISBN 978-1-4673-2119-8 Medium  
  Area Expedition Conference IV  
  Notes ADAS Approved no  
  Call Number Admin @ si @ CPL2012c; ADAS @ adas @ cpl2012d Serial 2013  
Permanent link to this record
 

 
Author David Vazquez; Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Antonio Lopez; Adriana Romero; Michal Drozdzal; Aaron Courville edit   pdf
openurl 
  Title A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images Type Conference Article
  Year 2017 Publication 31st International Congress and Exhibition on Computer Assisted Radiology and Surgery Abbreviated Journal  
  Volume Issue Pages  
  Keywords Deep Learning; Medical Imaging  
  Abstract (down) Colorectal cancer (CRC) is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss-rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aiming to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. We provide new baselines on this dataset by training standard fully convolutional networks (FCN) for semantic segmentation and significantly outperforming, without any further post-processing, prior results in endoluminal scene segmentation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CARS  
  Notes ADAS; MV; 600.075; 600.085; 600.076; 601.281; 600.118 Approved no  
  Call Number ADAS @ adas @ VBS2017a Serial 2880  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Learning Photometric Invariance from Diversified Color Model Ensembles Type Conference Article
  Year 2009 Publication 22nd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 565–572  
  Keywords road detection  
  Abstract (down) Color is a powerful visual cue for many computer vision applications such as image segmentation and object recognition. However, most of the existing color models depend on the imaging conditions affecting negatively the performance of the task at hand. Often, a reflection model (e.g., Lambertian or dichromatic reflectance) is used to derive color invariant models. However, those reflection models might be too restricted to model real-world scenes in which different reflectance mechanisms may hold simultaneously. Therefore, in this paper, we aim to derive color invariance by learning from color models to obtain diversified color invariant ensembles. First, a photometrical orthogonal and non-redundant color model set is taken on input composed of both color variants and invariants. Then, the proposed method combines and weights these color models to arrive at a diversified color ensemble yielding a proper balance between invariance (repeatability) and discriminative power (distinctiveness). To achieve this, the fusion method uses a multi-view approach to minimize the estimation error. In this way, the method is robust to data uncertainty and produces properly diversified color invariant ensembles. Experiments are conducted on three different image datasets to validate the method. From the theoretical and experimental results, it is concluded that the method is robust against severe variations in imaging conditions. The method is not restricted to a certain reflection model or parameter tuning. Further, the method outperforms state-of- the-art detection techniques in the field of object, skin and road recognition.  
  Address Miami (USA)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4244-3992-8 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS;ISE Approved no  
  Call Number ADAS @ adas @ AGL2009 Serial 1169  
Permanent link to this record
 

 
Author Jose Carlos Rubio; Joan Serrat; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Unsupervised co-segmentation through region matching Type Conference Article
  Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 749-756  
  Keywords  
  Abstract (down) Co-segmentation is defined as jointly partitioning multiple images depicting the same or similar object, into foreground and background. Our method consists of a multiple-scale multiple-image generative model, which jointly estimates the foreground and background appearance distributions from several images, in a non-supervised manner. In contrast to other co-segmentation methods, our approach does not require the images to have similar foregrounds and different backgrounds to function properly. Region matching is applied to exploit inter-image information by establishing correspondences between the common objects that appear in the scene. Moreover, computing many-to-many associations of regions allow further applications, like recognition of object parts across images. We report results on iCoseg, a challenging dataset that presents extreme variability in camera viewpoint, illumination and object deformations and poses. We also show that our method is robust against large intra-class variability in the MSRC database.  
  Address Providence, Rhode Island  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RSL2012b; ADAS @ adas @ Serial 2033  
Permanent link to this record
 

 
Author Patricia Marquez; H. Kause; A. Fuster; Aura Hernandez-Sabate; L. Florack; Debora Gil; Hans van Assen edit   pdf
doi  isbn
openurl 
  Title Factors Affecting Optical Flow Performance in Tagging Magnetic Resonance Imaging Type Conference Article
  Year 2014 Publication 17th International Conference on Medical Image Computing and Computer Assisted Intervention Abbreviated Journal  
  Volume 8896 Issue Pages 231-238  
  Keywords Optical flow; Performance Evaluation; Synthetic Database; ANOVA; Tagging Magnetic Resonance Imaging  
  Abstract (down) Changes in cardiac deformation patterns are correlated with cardiac pathologies. Deformation can be extracted from tagging Magnetic Resonance Imaging (tMRI) using Optical Flow (OF) techniques. For applications of OF in a clinical setting it is important to assess to what extent the performance of a particular OF method is stable across di erent clinical acquisition artifacts. This paper presents a statistical validation framework, based on ANOVA, to assess the motion and appearance factors that have the largest in uence on OF accuracy drop.
In order to validate this framework, we created a database of simulated tMRI data including the most common artifacts of MRI and test three di erent OF methods, including HARP.
 
  Address Boston; USA; September 2014  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-14677-5 Medium  
  Area Expedition Conference STACOM  
  Notes IAM; ADAS; 600.060; 601.145; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ MKF2014 Serial 2495  
Permanent link to this record
 

 
Author Muhammad Anwer Rao; David Vazquez; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Color Contribution to Part-Based Person Detection in Different Types of Scenarios Type Conference Article
  Year 2011 Publication 14th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 6855 Issue II Pages 463-470  
  Keywords Pedestrian Detection; Color  
  Abstract (down) Camera-based person detection is of paramount interest due to its potential applications. The task is diffcult because the great variety of backgrounds (scenarios, illumination) in which persons are present, as well as their intra-class variability (pose, clothe, occlusion). In fact, the class person is one of the included in the popular PASCAL visual object classes (VOC) challenge. A breakthrough for this challenge, regarding person detection, is due to Felzenszwalb et al. These authors proposed a part-based detector that relies on histograms of oriented gradients (HOG) and latent support vector machines (LatSVM) to learn a model of the whole human body and its constitutive parts, as well as their relative position. Since the approach of Felzenszwalb et al. appeared new variants have been proposed, usually giving rise to more complex models. In this paper, we focus on an issue that has not attracted suficient interest up to now. In particular, we refer to the fact that HOG is usually computed from RGB color space, but other possibilities exist and deserve the corresponding investigation. In this paper we challenge RGB space with the opponent color space (OPP), which is inspired in the human vision system.We will compute the HOG on top of OPP, then we train and test the part-based human classifer by Felzenszwalb et al. using PASCAL VOC challenge protocols and person database. Our experiments demonstrate that OPP outperforms RGB. We also investigate possible differences among types of scenarios: indoor, urban and countryside. Interestingly, our experiments suggest that the beneficts of OPP with respect to RGB mainly come for indoor and countryside scenarios, those in which the human visual system was designed by evolution.  
  Address Seville, Spain  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Berlin Heidelberg Editor P. Real, D. Diaz, H. Molina, A. Berciano, W. Kropatsch  
  Language English Summary Language english Original Title Color Contribution to Part-Based Person Detection in Different Types of Scenarios  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-23677-8 Medium  
  Area Expedition Conference CAIP  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ RVL2011b Serial 1665  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: