toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Misael Rosales; Petia Radeva; Oriol Rodriguez; Debora Gil edit   pdf
doi  openurl
  Title Suppression of IVUS Image Rotation. A Kinematic Approach Type Book Chapter
  Year 2005 Publication Functional Imaging and Modeling of the Heart Abbreviated Journal LNCS  
  Volume 3504 Issue Pages 889-892  
  Keywords  
  Abstract IntraVascular Ultrasound (IVUS) is an exploratory technique used in interventional procedures that shows cross section images of arteries and provides qualitative information about the causes and severity of the arterial lumen narrowing. Cross section analysis as well as visualization of plaque extension in a vessel segment during the catheter imaging pullback are the technique main advantages. However, IVUS sequence exhibits a periodic rotation artifact that makes difficult the longitudinal lesion inspection and hinders any segmentation algorithm. In this paper we propose a new kinematic method to estimate and remove the image rotation of IVUS images sequences. Results on several IVUS sequences show good results and prompt some of the clinical applications to vessel dynamics study, and relation to vessel pathology.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Springer Berlin / Heidelberg Place of Publication Editor Frangi, Alejandro and Radeva, Petia and Santos, Andres and Hernandez, Monica  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume 3504 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ RRR2005 Serial 1645  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Mireia Burnat; Steven Jansen; Jordi Martinez-Vilalta edit   pdf
doi  isbn
openurl 
  Title Structure-Preserving Smoothing of Biomedical Images Type Conference Article
  Year 2009 Publication 13th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 5702 Issue Pages 427-434  
  Keywords non-linear smoothing; differential geometry; anatomical structures segmentation; cardiac magnetic resonance; computerized tomography.  
  Abstract Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images.  
  Address Münster, Germany  
  Corporate Author Thesis  
  Publisher (up) Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-03766-5 Medium  
  Area Expedition Conference CAIP  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GHB2009 Serial 1527  
Permanent link to this record
 

 
Author Carles Sanchez;F. Javier Sanchez; Antoni Rosell; Debora Gil edit   pdf
url  doi
isbn  openurl
  Title An illumination model of the trachea appearance in videobronchoscopy images Type Book Chapter
  Year 2012 Publication Image Analysis and Recognition Abbreviated Journal LNCS  
  Volume 7325 Issue Pages 313-320  
  Keywords Bronchoscopy, tracheal ring, stenosis assesment, trachea appearance model, segmentation  
  Abstract Videobronchoscopy is a medical imaging technique that allows interactive navigation inside the respiratory pathways. This imaging modality provides realistic images and allows non-invasive minimal intervention procedures. Tracheal procedures are routinary interventions that require assessment of the percentage of obstructed pathway for injury (stenosis) detection. Visual assessment in videobronchoscopic sequences requires high expertise of trachea anatomy and is prone to human error.
This paper introduces an automatic method for the estimation of steneosed trachea percentage reduction in videobronchoscopic images. We look for tracheal rings , whose deformation determines the degree of obstruction. For ring extraction , we present a ring detector based on an illumination and appearance model. This model allows us to parametrise the ring detection. Finally, we can infer optimal estimation parameters for any video resolution.
 
  Address Aveiro, Portugal  
  Corporate Author Thesis  
  Publisher (up) Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-31297-7 Medium  
  Area 800 Expedition Conference ICIAR  
  Notes MV;IAM Approved no  
  Call Number IAM @ iam @ SSR2012 Serial 1898  
Permanent link to this record
 

 
Author Debora Gil; Agnes Borras; Sergio Vera; Miguel Angel Gonzalez Ballester edit   pdf
doi  isbn
openurl 
  Title A Validation Benchmark for Assessment of Medial Surface Quality for Medical Applications Type Conference Article
  Year 2013 Publication 9th International Conference on Computer Vision Systems Abbreviated Journal  
  Volume 7963 Issue Pages 334-343  
  Keywords Medial Surfaces; Shape Representation; Medical Applications; Performance Evaluation  
  Abstract Confident use of medial surfaces in medical decision support systems requires evaluating their quality for detecting pathological deformations and describing anatomical volumes. Validation in the medical imaging field is a challenging task mainly due to the difficulties for getting consensual ground truth. In this paper we propose a validation benchmark for assessing medial surfaces in the context of medical applications. Our benchmark includes a home-made database of synthetic medial surfaces and volumes and specific scores for evaluating surface accuracy, its stability against volume deformations and its capabilities for accurate reconstruction of anatomical volumes.  
  Address Sant Petersburg; Russia; July 2013  
  Corporate Author Thesis  
  Publisher (up) Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-39401-0 Medium  
  Area Expedition Conference ICVS  
  Notes IAM; 600.044; 600.060 Approved no  
  Call Number Admin @ si @ GBV2013 Serial 2300  
Permanent link to this record
 

 
Author Ferran Poveda; Debora Gil;Enric Marti edit   pdf
doi  isbn
openurl 
  Title Multi-resolution DT-MRI cardiac tractography Type Conference Article
  Year 2012 Publication Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges Abbreviated Journal  
  Volume 7746 Issue Pages 270-277  
  Keywords  
  Abstract Even using objective measures from DT-MRI no consensus about myocardial architecture has been achieved so far. Streamlining provides good reconstructions at low level of detail, but falls short to give global abstract interpretations. In this paper, we present a multi-resolution methodology that is able to produce simplified representations of cardiac architecture. Our approach produces a reduced set of tracts that are representative of the main geometric features of myocardial anatomical structure. Experiments show that fiber geometry is preserved along reductions, which validates the simplified model for interpretation of cardiac architecture.  
  Address Nice, France  
  Corporate Author Thesis  
  Publisher (up) Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-36960-5 Medium  
  Area Expedition Conference STACOM  
  Notes IAM Approved no  
  Call Number IAM @ iam @ PGM2012 Serial 1986  
Permanent link to this record
 

 
Author Debora Gil;Agnes Borras;Ruth Aris;Mariano Vazquez;Pierre Lafortune; Guillame Houzeaux edit   pdf
doi  isbn
openurl 
  Title What a difference in biomechanics cardiac fiber makes Type Conference Article
  Year 2012 Publication Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges Abbreviated Journal  
  Volume 7746 Issue Pages 253-260  
  Keywords  
  Abstract Computational simulations of the heart are a powerful tool for a comprehensive understanding of cardiac function and its intrinsic relationship with its muscular architecture. Cardiac biomechanical models require a vector field representing the orientation of cardiac fibers. A wrong orientation of the fibers can lead to a
non-realistic simulation of the heart functionality. In this paper we explore the impact of the fiber information on the simulated biomechanics of cardiac muscular anatomy. We have used the John Hopkins database to perform a biomechanical simulation using both a synthetic benchmark fiber distribution and the data obtained experimentally from DTI. Results illustrate how differences in fiber orientation affect heart deformation along cardiac cycle.
 
  Address Nice, France  
  Corporate Author Thesis  
  Publisher (up) Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-36960-5 Medium  
  Area Expedition Conference STACOM  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GBA2012 Serial 1987  
Permanent link to this record
 

 
Author Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil edit   pdf
url  doi
isbn  openurl
  Title Optimal Medial Surface Generation for Anatomical Volume Representations Type Book Chapter
  Year 2012 Publication Abdominal Imaging. Computational and Clinical Applications Abbreviated Journal LNCS  
  Volume 7601 Issue Pages 265-273  
  Keywords Medial surface representation; volume reconstruction  
  Abstract Medial representations are a widely used technique in abdominal organ shape representation and parametrization. Those methods require good medial manifolds as a starting point. Any medial
surface used to parametrize a volume should be simple enough to allow an easy manipulation and complete enough to allow an accurate reconstruction of the volume. Obtaining good quality medial
surfaces is still a problem with current iterative thinning methods. This forces the usage of generic, pre-calculated medial templates that are adapted to the final shape at the cost of a drop in volume reconstruction.
This paper describes an operator for generation of medial structures that generates clean and complete manifolds well suited for their further use in medial representations of abdominal organ volumes. While being simpler than thinning surfaces, experiments show its high performance in volume reconstruction and preservation of medial surface main branching topology.
 
  Address Nice, France  
  Corporate Author Thesis  
  Publisher (up) Springer Berlin Heidelberg Place of Publication Editor Yoshida, Hiroyuki and Hawkes, David and Vannier, MichaelW.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-33611-9 Medium  
  Area Expedition Conference STACOM  
  Notes IAM Approved no  
  Call Number IAM @ iam @ VGG2012b Serial 1988  
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Agnes Borras; F. Javier Sanchez; Frederic Perez; Marius G. Linguraru edit  openurl
  Title Computation and Evaluation of Medial Surfaces for Shape Representation of Abdominal Organs Type Conference Article
  Year 2011 Publication Workshop on Computational and Clinical Applications in Abdominal Imaging Abbreviated Journal  
  Volume 7029 Issue Pages 223-230  
  Keywords  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.  
  Address Nice, France  
  Corporate Author Thesis  
  Publisher (up) Springer Berlin Heidelberg Place of Publication Editor In H. Yoshida et al  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ABDI  
  Notes IAM; MV Approved no  
  Call Number VGB2011 Serial 2036  
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Agnes Borras; Marius George Linguraru; Miguel Angel Gonzalez Ballester edit   pdf
url  doi
openurl 
  Title Geometric Steerable Medial Maps Type Journal Article
  Year 2013 Publication Machine Vision and Applications Abbreviated Journal MVA  
  Volume 24 Issue 6 Pages 1255-1266  
  Keywords Medial Representations ,Medial Manifolds Comparation , Surface , Reconstruction  
  Abstract In order to provide more intuitive and easily interpretable representations of complex shapes/organs, medial manifolds should reach a compromise between simplicity in geometry and capability for restoring the anatomy/shape of the organ/volume. Existing morphological methods show excellent results when applied to 2D objects, but their quality drops across dimensions.
This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoids degenerated medial axis segments. Second, we introduce a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to syn- thetic shapes of known medial geometry. We also show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume.
 
  Address  
  Corporate Author Thesis  
  Publisher (up) Springer Berlin Heidelberg Place of Publication Editor Mubarak Shah  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0932-8092 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 605.203; 600.060; 600.044 Approved no  
  Call Number IAM @ iam @ VGB2013 Serial 2192  
Permanent link to this record
 

 
Author Carles Sanchez; Jorge Bernal; Debora Gil; F. Javier Sanchez edit   pdf
doi  isbn
openurl 
  Title On-line lumen centre detection in gastrointestinal and respiratory endoscopy Type Conference Article
  Year 2013 Publication Second International Workshop Clinical Image-Based Procedures Abbreviated Journal  
  Volume 8361 Issue Pages 31-38  
  Keywords Lumen centre detection; Bronchoscopy; Colonoscopy  
  Abstract We present in this paper a novel lumen centre detection for gastrointestinal and respiratory endoscopic images. The proposed method is based on the appearance and geometry of the lumen, which we defined as the darkest image region which centre is a hub of image gradients. Experimental results validated on the first public annotated gastro-respiratory database prove the reliability of the method for a wide range of images (with precision over 95 %).  
  Address Nagoya; Japan; September 2013  
  Corporate Author Thesis  
  Publisher (up) Springer International Publishing Place of Publication Editor Erdt, Marius and Linguraru, Marius George and Oyarzun Laura, Cristina and Shekhar, Raj and Wesarg, Stefan and González Ballester, Miguel Angel and Drechsler, Klaus  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-05665-4 Medium  
  Area 800 Expedition Conference CLIP  
  Notes MV; IAM; 600.047; 600.044; 600.060 Approved no  
  Call Number Admin @ si @ SBG2013 Serial 2302  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: