toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Daniel Hernandez; Antonio Espinosa; David Vazquez; Antonio Lopez; Juan Carlos Moure edit   pdf
url  doi
openurl 
  Title GPU-accelerated real-time stixel computation Type Conference Article
  Year (down) 2017 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1054-1062  
  Keywords Autonomous Driving; GPU; Stixel  
  Abstract The Stixel World is a medium-level, compact representation of road scenes that abstracts millions of disparity pixels into hundreds or thousands of stixels. The goal of this work is to implement and evaluate a complete multi-stixel estimation pipeline on an embedded, energyefficient, GPU-accelerated device. This work presents a full GPU-accelerated implementation of stixel estimation that produces reliable results at 26 frames per second (real-time) on the Tegra X1 for disparity images of 1024×440 pixels and stixel widths of 5 pixels, and achieves more than 400 frames per second on a high-end Titan X GPU card.  
  Address Santa Rosa; CA; USA; March 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes ADAS; 600.118 Approved no  
  Call Number ADAS @ adas @ HEV2017b Serial 2812  
Permanent link to this record
 

 
Author Cristina Palmero; Jordi Esquirol; Vanessa Bayo; Miquel Angel Cos; Pouya Ahmadmonfared; Joan Salabert; David Sanchez; Sergio Escalera edit   pdf
doi  openurl
  Title Automatic Sleep System Recommendation by Multi-modal RBG-Depth-Pressure Anthropometric Analysis Type Journal Article
  Year (down) 2017 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 122 Issue 2 Pages 212–227  
  Keywords Sleep system recommendation; RGB-Depth data Pressure imaging; Anthropometric landmark extraction; Multi-part human body segmentation  
  Abstract This paper presents a novel system for automatic sleep system recommendation using RGB, depth and pressure information. It consists of a validated clinical knowledge-based model that, along with a set of prescription variables extracted automatically, obtains a personalized bed design recommendation. The automatic process starts by performing multi-part human body RGB-D segmentation combining GrabCut, 3D Shape Context descriptor and Thin Plate Splines, to then extract a set of anthropometric landmark points by applying orthogonal plates to the segmented human body. The extracted variables are introduced to the computerized clinical model to calculate body circumferences, weight, morphotype and Body Mass Index categorization. Furthermore, pressure image analysis is performed to extract pressure values and at-risk points, which are also introduced to the model to eventually obtain the final prescription of mattress, topper, and pillow. We validate the complete system in a set of 200 subjects, showing accurate category classification and high correlation results with respect to manual measures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; 303.100 Approved no  
  Call Number Admin @ si @ PEB2017 Serial 2765  
Permanent link to this record
 

 
Author Debora Gil; Sergio Vera; Agnes Borras; Albert Andaluz; Miguel Angel Gonzalez Ballester edit   pdf
doi  openurl
  Title Anatomical Medial Surfaces with Efficient Resolution of Branches Singularities Type Journal Article
  Year (down) 2017 Publication Medical Image Analysis Abbreviated Journal MIA  
  Volume 35 Issue Pages 390-402  
  Keywords Medial Representations; Shape Recognition; Medial Branching Stability ; Singular Points  
  Abstract Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a con dent application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an ecient GPU-CPU implementation using standard image processing tools. We show the method computational eciency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.060; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ GVB2017 Serial 2775  
Permanent link to this record
 

 
Author Jean-Pascal Jacob; Mariella Dimiccoli; L. Moisan edit   pdf
url  openurl
  Title Active skeleton for bacteria modelling Type Journal Article
  Year (down) 2017 Publication Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization Abbreviated Journal CMBBE  
  Volume 5 Issue 4 Pages 274-286  
  Keywords  
  Abstract The investigation of spatio-temporal dynamics of bacterial cells and their molecular components requires automated image analysis tools to track cell shape properties and molecular component locations inside the cells. In the study of bacteria aging, the molecular components of interest are protein aggregates accumulated near bacteria boundaries. This particular location makes very ambiguous the correspondence between aggregates and cells, since computing accurately bacteria boundaries in phase-contrast time-lapse imaging is a challenging task. This paper proposes an active skeleton formulation for bacteria modelling which provides several advantages: an easy computation of shape properties (perimeter, length, thickness and orientation), an improved boundary accuracy in noisy images and a natural bacteria-centred coordinate system that permits the intrinsic location of molecular components inside the cell. Starting from an initial skeleton estimate, the medial axis of the bacterium is obtained by minimising an energy function which incorporates bacteria shape constraints. Experimental results on biological images and comparative evaluation of the performances validate the proposed approach for modelling cigar-shaped bacteria like Escherichia coli. The Image-J plugin of the proposed method can be found online at http://fluobactracker.inrialpes.fr.  
  Address  
  Corporate Author Thesis  
  Publisher Taylor & Francis Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @JDM2017 Serial 2784  
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate; David Vazquez; Antonio Lopez; Jaume Amores edit   pdf
doi  openurl
  Title On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts Type Journal Article
  Year (down) 2017 Publication IEEE Transactions on cybernetics Abbreviated Journal Cyber  
  Volume 47 Issue 11 Pages 3980 - 3990  
  Keywords Multicue; multimodal; multiview; object detection  
  Abstract Despite recent significant advances, object detection continues to be an extremely challenging problem in real scenarios. In order to develop a detector that successfully operates under these conditions, it becomes critical to leverage upon multiple cues, multiple imaging modalities, and a strong multiview (MV) classifier that accounts for different object views and poses. In this paper, we provide an extensive evaluation that gives insight into how each of these aspects (multicue, multimodality, and strong MV classifier) affect accuracy both individually and when integrated together. In the multimodality component, we explore the fusion of RGB and depth maps obtained by high-definition light detection and ranging, a type of modality that is starting to receive increasing attention. As our analysis reveals, although all the aforementioned aspects significantly help in improving the accuracy, the fusion of visible spectrum and depth information allows to boost the accuracy by a much larger margin. The resulting detector not only ranks among the top best performers in the challenging KITTI benchmark, but it is built upon very simple blocks that are easy to implement and computationally efficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-2267 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 600.082; 600.076; 600.118 Approved no  
  Call Number Admin @ si @ Serial 2810  
Permanent link to this record
 

 
Author Daniel Hernandez; Lukas Schneider; Antonio Espinosa; David Vazquez; Antonio Lopez; Uwe Franke; Marc Pollefeys; Juan C. Moure edit   pdf
openurl 
  Title Slanted Stixels: Representing San Francisco's Steepest Streets} Type Conference Article
  Year (down) 2017 Publication 28th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this work we present a novel compact scene representation based on Stixels that infers geometric and semantic information. Our approach overcomes the previous rather restrictive geometric assumptions for Stixels by introducing a novel depth model to account for non-flat roads and slanted objects. Both semantic and depth cues are used jointly to infer the scene representation in a sound global energy minimization formulation. Furthermore, a novel approximation scheme is introduced that uses an extremely efficient over-segmentation. In doing so, the computational complexity of the Stixel inference algorithm is reduced significantly, achieving real-time computation capabilities with only a slight drop in accuracy. We evaluate the proposed approach in terms of semantic and geometric accuracy as well as run-time on four publicly available benchmark datasets. Our approach maintains accuracy on flat road scene datasets while improving substantially on a novel non-flat road dataset.  
  Address London; uk; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes ADAS; 600.118 Approved no  
  Call Number ADAS @ adas @ HSE2017a Serial 2945  
Permanent link to this record
 

 
Author Ozan Caglayan; Walid Aransa; Adrien Bardet; Mercedes Garcia-Martinez; Fethi Bougares; Loic Barrault; Marc Masana; Luis Herranz; Joost Van de Weijer edit   pdf
openurl 
  Title LIUM-CVC Submissions for WMT17 Multimodal Translation Task Type Conference Article
  Year (down) 2017 Publication 2nd Conference on Machine Translation Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper describes the monomodal and multimodal Neural Machine Translation systems developed by LIUM and CVC for WMT17 Shared Task on Multimodal Translation. We mainly explored two multimodal architectures where either global visual features or convolutional feature maps are integrated in order to benefit from visual context. Our final systems ranked first for both En-De and En-Fr language pairs according to the automatic evaluation metrics METEOR and BLEU.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WMT  
  Notes LAMP; 600.106; 600.120 Approved no  
  Call Number Admin @ si @ CAB2017 Serial 3035  
Permanent link to this record
 

 
Author Ishaan Gulrajani; Kundan Kumar; Faruk Ahmed; Adrien Ali Taiga; Francesco Visin; David Vazquez; Aaron Courville edit   pdf
url  openurl
  Title PixelVAE: A Latent Variable Model for Natural Images Type Conference Article
  Year (down) 2017 Publication 5th International Conference on Learning Representations Abbreviated Journal  
  Volume Issue Pages  
  Keywords Deep Learning; Unsupervised Learning  
  Abstract Natural image modeling is a landmark challenge of unsupervised learning. Variational Autoencoders (VAEs) learn a useful latent representation and generate samples that preserve global structure but tend to suffer from image blurriness. PixelCNNs model sharp contours and details very well, but lack an explicit latent representation and have difficulty modeling large-scale structure in a computationally efficient way. In this paper, we present PixelVAE, a VAE model with an autoregressive decoder based on PixelCNN. The resulting architecture achieves state-of-the-art log-likelihood on binarized MNIST. We extend PixelVAE to a hierarchy of multiple latent variables at different scales; this hierarchical model achieves competitive likelihood on 64x64 ImageNet and generates high-quality samples on LSUN bedrooms.  
  Address Toulon; France; April 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICLR  
  Notes ADAS; 600.085; 600.076; 601.281; 600.118 Approved no  
  Call Number ADAS @ adas @ GKA2017 Serial 2815  
Permanent link to this record
 

 
Author Xavier Perez Sala; Fernando De la Torre; Laura Igual; Sergio Escalera; Cecilio Angulo edit  url
openurl 
  Title Subspace Procrustes Analysis Type Journal Article
  Year (down) 2017 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 121 Issue 3 Pages 327–343  
  Keywords  
  Abstract Procrustes Analysis (PA) has been a popular technique to align and build 2-D statistical models of shapes. Given a set of 2-D shapes PA is applied to remove rigid transformations. Then, a non-rigid 2-D model is computed by modeling (e.g., PCA) the residual. Although PA has been widely used, it has several limitations for modeling 2-D shapes: occluded landmarks and missing data can result in local minima solutions, and there is no guarantee that the 2-D shapes provide a uniform sampling of the 3-D space of rotations for the object. To address previous issues, this paper proposes Subspace PA (SPA). Given several
instances of a 3-D object, SPA computes the mean and a 2-D subspace that can simultaneously model all rigid and non-rigid deformations of the 3-D object. We propose a discrete (DSPA) and continuous (CSPA) formulation for SPA, assuming that 3-D samples of an object are provided. DSPA extends the traditional PA, and produces unbiased 2-D models by uniformly sampling different views of the 3-D object. CSPA provides a continuous approach to uniformly sample the space of 3-D rotations, being more efficient in space and time. Experiments using SPA to learn 2-D models of bodies from motion capture data illustrate the benefits of our approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; HuPBA; no proj Approved no  
  Call Number Admin @ si @ PTI2017 Serial 2841  
Permanent link to this record
 

 
Author Frederic Sampedro; Anna Domenech; Sergio Escalera; Ignasi Carrio edit  doi
openurl 
  Title Computing quantitative indicators of structural renal damage in pediatric DMSA scans Type Journal Article
  Year (down) 2017 Publication Revista Española de Medicina Nuclear e Imagen Molecular Abbreviated Journal REMNIM  
  Volume 36 Issue 2 Pages 72-77  
  Keywords  
  Abstract OBJECTIVES:
The proposal and implementation of a computational framework for the quantification of structural renal damage from 99mTc-dimercaptosuccinic acid (DMSA) scans. The aim of this work is to propose, implement, and validate a computational framework for the quantification of structural renal damage from DMSA scans and in an observer-independent manner.
MATERIALS AND METHODS:
From a set of 16 pediatric DMSA-positive scans and 16 matched controls and using both expert-guided and automatic approaches, a set of image-derived quantitative indicators was computed based on the relative size, intensity and histogram distribution of the lesion. A correlation analysis was conducted in order to investigate the association of these indicators with other clinical data of interest in this scenario, including C-reactive protein (CRP), white cell count, vesicoureteral reflux, fever, relative perfusion, and the presence of renal sequelae in a 6-month follow-up DMSA scan.
RESULTS:
A fully automatic lesion detection and segmentation system was able to successfully classify DMSA-positive from negative scans (AUC=0.92, sensitivity=81% and specificity=94%). The image-computed relative size of the lesion correlated with the presence of fever and CRP levels (p<0.05), and a measurement derived from the distribution histogram of the lesion obtained significant performance results in the detection of permanent renal damage (AUC=0.86, sensitivity=100% and specificity=75%).
CONCLUSIONS:
The proposal and implementation of a computational framework for the quantification of structural renal damage from DMSA scans showed a promising potential to complement visual diagnosis and non-imaging indicators.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; no menciona Approved no  
  Call Number Admin @ si @ SDE2017 Serial 2842  
Permanent link to this record
 

 
Author Jose Garcia-Rodriguez; Isabelle Guyon; Sergio Escalera; Alexandra Psarrou; Andrew Lewis; Miguel Cazorla edit  doi
openurl 
  Title Editorial: Special Issue on Computational Intelligence for Vision and Robotics Type Journal Article
  Year (down) 2017 Publication Neural Computing and Applications Abbreviated Journal Neural Computing and Applications  
  Volume 28 Issue 5 Pages 853–854  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; no menciona Approved no  
  Call Number Admin @ si @ GGE2017 Serial 2845  
Permanent link to this record
 

 
Author Arash Akbarinia; Karl R. Gegenfurtner edit  doi
openurl 
  Title Metameric Mismatching in Natural and Artificial Reflectances Type Journal Article
  Year (down) 2017 Publication Journal of Vision Abbreviated Journal JV  
  Volume 17 Issue 10 Pages 390-390  
  Keywords Metamer; colour perception; spectral discrimination; photoreceptors  
  Abstract The human visual system and most digital cameras sample the continuous spectral power distribution through three classes of receptors. This implies that two distinct spectral reflectances can result in identical tristimulus values under one illuminant and differ under another – the problem of metamer mismatching. It is still debated how frequent this issue arises in the real world, using naturally occurring reflectance functions and common illuminants.

We gathered more than ten thousand spectral reflectance samples from various sources, covering a wide range of environments (e.g., flowers, plants, Munsell chips) and evaluated their responses under a number of natural and artificial source of lights. For each pair of reflectance functions, we estimated the perceived difference using the CIE-defined distance ΔE2000 metric in Lab color space.

The degree of metamer mismatching depended on the lower threshold value l when two samples would be considered to lead to equal sensor excitations (ΔE < l), and on the higher threshold value h when they would be considered different. For example, for l=h=1, we found that 43.129 comparisons out of a total of 6×107 pairs would be considered metameric (1 in 104). For l=1 and h=5, this number reduced to 705 metameric pairs (2 in 106). Extreme metamers, for instance l=1 and h=10, were rare (22 pairs or 6 in 108), as were instances where the two members of a metameric pair would be assigned to different color categories. Not unexpectedly, we observed variations among different reflectance databases and illuminant spectra with more frequency under artificial illuminants than natural ones.

Overall, our numbers are not very different from those obtained earlier (Foster et al, JOSA A, 2006). However, our results also show that the degree of metamerism is typically not very strong and that category switches hardly ever occur.
 
  Address Florida, USA; May 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; no menciona Approved no  
  Call Number Admin @ si @ AkG2017 Serial 2899  
Permanent link to this record
 

 
Author Marta Diez-Ferrer; Debora Gil; Elena Carreño; Susana Padrones; Samantha Aso edit  url
openurl 
  Title Positive Airway Pressure-Enhanced CT to Improve Virtual Bronchoscopic Navigation Type Journal Article
  Year (down) 2017 Publication Journal of Thoracic Oncology Abbreviated Journal JTO  
  Volume 12 Issue 1S Pages S596-S597  
  Keywords Thorax CT; diagnosis; Peripheral Pulmonary Nodule  
  Abstract A main weakness of virtual bronchoscopic navigation (VBN) is unsuccessful segmentation of distal branches approaching peripheral pulmonary nodules (PPN). CT scan acquisition protocol is pivotal for segmentation covering the utmost periphery. We hypothesize that application of continuous positive airway pressure (CPAP) during CT acquisition could improve visualization and segmentation of peripheral bronchi. The purpose of the present pilot study is to compare quality of segmentations under 4 CT acquisition modes: inspiration (INSP), expiration (EXP) and both with CPAP (INSP-CPAP and EXP-CPAP).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ DGC2017a Serial 2883  
Permanent link to this record
 

 
Author Simon Jégou; Michal Drozdzal; David Vazquez; Adriana Romero; Yoshua Bengio edit   pdf
url  doi
openurl 
  Title The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation Type Conference Article
  Year (down) 2017 Publication IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords Semantic Segmentation  
  Abstract State-of-the-art approaches for semantic image segmentation are built on Convolutional Neural Networks (CNNs). The typical segmentation architecture is composed of (a) a downsampling path responsible for extracting coarse semantic features, followed by (b) an upsampling path trained to recover the input image resolution at the output of the model and, optionally, (c) a post-processing module (e.g. Conditional Random Fields) to refine the model predictions.

Recently, a new CNN architecture, Densely Connected Convolutional Networks (DenseNets), has shown excellent results on image classification tasks. The idea of DenseNets is based on the observation that if each layer is directly connected to every other layer in a feed-forward fashion then the network will be more accurate and easier to train.

In this paper, we extend DenseNets to deal with the problem of semantic segmentation. We achieve state-of-the-art results on urban scene benchmark datasets such as CamVid and Gatech, without any further post-processing module nor pretraining. Moreover, due to smart construction of the model, our approach has much less parameters than currently published best entries for these datasets.
 
  Address Honolulu; USA; July 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MILAB; ADAS; 600.076; 600.085; 601.281 Approved no  
  Call Number ADAS @ adas @ JDV2016 Serial 2866  
Permanent link to this record
 

 
Author Pau Riba; Josep Llados; Alicia Fornes edit   pdf
doi  openurl
  Title Error-tolerant coarse-to-fine matching model for hierarchical graphs Type Conference Article
  Year (down) 2017 Publication 11th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition Abbreviated Journal  
  Volume 10310 Issue Pages 107-117  
  Keywords Graph matching; Hierarchical graph; Graph-based representation; Coarse-to-fine matching  
  Abstract Graph-based representations are effective tools to capture structural information from visual elements. However, retrieving a query graph from a large database of graphs implies a high computational complexity. Moreover, these representations are very sensitive to noise or small changes. In this work, a novel hierarchical graph representation is designed. Using graph clustering techniques adapted from graph-based social media analysis, we propose to generate a hierarchy able to deal with different levels of abstraction while keeping information about the topology. For the proposed representations, a coarse-to-fine matching method is defined. These approaches are validated using real scenarios such as classification of colour images and handwritten word spotting.  
  Address Anacapri; Italy; May 2017  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor Pasquale Foggia; Cheng-Lin Liu; Mario Vento  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GbRPR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ RLF2017a Serial 2951  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: