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Universitat Autònoma de Barcelona, Spain

{priba,josep,afornes}@cvc.uab.es

http://www.cvc.uab.es

Abstract. Graph-based representations are effective tools to capture
structural information from visual elements. However, retrieving a query
graph from a large database of graphs implies a high computational
complexity. Moreover, these representations are very sensitive to noise or
small changes. In this work, a novel hierarchical graph representation is
designed. Using graph clustering techniques adapted from graph-based
social media analysis, we propose to generate a hierarchy able to deal
with different levels of abstraction while keeping information about the
topology. For the proposed representations, a coarse-to-fine matching
method is defined. These approaches are validated using real scenarios
such as classification of colour images and handwritten word spotting.

Keywords: Graph matching, Hierarchical graph, Graph-based repre-
sentation, Coarse-to-fine matching

1 Introduction

Graph-based representations play an important role in content-based image re-
trieval. Using graphs, not only statistical information is codified but also the
relations between the compounding parts. The use of graph representations in
computer vision has two main requirements. First, the extraction of the struc-
tures underlying the visual objects. Second, error-tolerant metrics coping with
noise or distortion must be designed. Graph matching is one of the most impor-
tant challenges of graph processing [6]. Generally speaking, the problem consists
in finding the best correspondence between the sets of vertices of two graphs
preserving the underlying structures. The intrinsic variability of patterns, noise
and errors produced from the graph extraction process, makes mandatory to
encode tolerance to errors into graph matching frameworks. Thus error-tolerant
graph matching has to be applied.

Graph edit distance [9] is the process of evaluating the similarity of two dif-
ferent graphs computing the minimum edit cost from the source to the target
graph in terms of node and edge insertion, deletion and substitution. It is an
optimal method and the computational complexity is exponential in the number
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of nodes. A suboptimal approximation called bipartite graph matching was pro-
posed by Riesen et al. [16]. It is based on the assignment problem solution using
a cost matrix which codifies the edit operations costs. More recently, an efficient
approach was proposed by Zhou and De la Torre [20] formulating graph match-
ing as a quadratic assignment. To avoid the computation of the large pairwise
affinity matrix, they propose a factorisation into smaller matrices that encode
the local structure of each graph and the pairwise affinity between edges.

When dealing with large scale data, indexation strategies are required to
prune the number of graph comparisons. Generally, graph indexing is solved
by graph factorisation techniques where the dataset of graphs is decomposed in
smaller ones representing a codebook of compounding structures. The indexation
is formulated in terms of matching the constituent graphs organised in a look-up
table structure. Usually, path-based methods are used to split the graphs into
small redundant fragments. GraphGrep [17] enumerates all the existing paths
up to a predefined length. This reduces the search space performing the exact
matching using only few graphs. A relevant work was proposed by Yan et al.
[19]. They propose to use frequent substructures instead of path-based meth-
ods as indexing features. Frequent graph substructures are obtained by graph
sequentialization, according to a depth first search (DFS) traversal of the graph
edges. Edge sequences are organised in a prefix tree called the gIndex tree. Riba
et al. [15] proposed a binary embedding for the local context of each node. A
vote scheme is used for indexation, so the subgraphs with more votes are more
accurately analyzed in a finer matching process.

The above methods rely on local structures rather than global knowledge of
the graph. An interesting alternative is to use a scale-space approach where the
input data is hierarchically organized, summarizing it in order to avoid complex
graph comparisons. Several hierarchical graph approaches have been proposed.
Brun and Kropatsch [4] introduces a set of relationships between regions of a
partition through irregular graph pyramids. Broelemann et al. [3] propose to deal
with noise such as spurious nodes and edges through a hierarchical representation
of plausible graphs. Ahuja and Todorovic [1] present a region based approach
for object recognition based in multi-scale region segmentation. Conte et al. [5]
propose a similar graph multi-resolution approach in order to improve the object
tracking in a video. Mousavi et al. [11] use a hierarchical graph representation
in order to improve the information codified by graph embedding frameworks.
Indexation frameworks have been also proposed.

The main contribution of this work is a hierarchical graph representation and
matching able to discard non-promising structures. Our hierarchical information
avoids a direct matching at the original graph. The hierarchy is designed to
perform a big reduction of the graphs drastically reducing the matching time.
The proposed approaches are validated using real scenarios such as classification
of colour images and handwritten word spotting. In the next sections we describe
the representation, the matching and the results respectively.
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2 Hierarchical Attributed Graph Representation

2.1 Hierarchy construction

A hierarchical graph representing information at different levels of abstraction
(contraction) allows to perform the retrieval problem in an abstract manner.

Definition 1 (Hierarchical Graph). A hierarchical graph H is defined as a
6-tuple H(V,EN , EH , LV , LEN

, LEH
) where V is the set of nodes; EN ⊆ V × V

are the neighborhood edges; EH ⊆ V ×V are the hierarchical edges; LV, LEN
and

LEH
are three labeling functions defined as LV : V → ΣV × Ak

V , LEN
: EN →

ΣEN
×Al

EN
and LEH

: EH → ΣEH
×Am

EH
, where ΣV , ΣEN

and ΣEH
are three

sets of symbolic labels for vertices and edges, AV , AEN
and AEH

are three sets
of attributes for vertices and edges, respectively, and k, l,m ∈ N.

Given a graph G, two functions are needed to construct a hierarchical graph H:

– Contraction: c : G → H, defines the groups of nodes that are gathered to-
gether. The contraction process can follow different criteria such as topology,
features of the nodes or edges, etc. This function follows a clustering process.

– Embedding: ϕ : G→ Rn, returns a vectorial representation of the contracted
subgraph to be used as an attribute. The embedding function can be seen as
a signature of the subgraph that summarizes the information from one level
to another (information propagation between levels).

We propose a contraction criterion based on the topology. The embedding
function is applied to all contracted groups of nodes propagating the information.
This function is application dependent and is specified for each particular case.

2.2 Hierarchy construction by community detection

To determine the group of nodes that are joined into a unique vertex, the Girvan-
Newman algorithm [10] is applied. This is a well-known method for for commu-
nity detection in complex systems with complexity O(m2n), where m and n are
the number of edges and nodes respectively. It is a global divisive algorithm
which removes the appropriate edge at each step until all the edges are deleted.
The betweenness centrality measure is used as edge selection. The betweenness
centrality of e ∈ E is defined as the number of shortest walks between any pair
of nodes that cross e. The idea is that the edges with higher centrality are candi-
dates to connect two clusters. After the edge deletion, each connected component
is considered as a cluster in the hierarchy. This algorithm consists of 4 steps:

1. Calculate the betweenness centrality (BC) for all edges in the network.
2. Remove the edge with highest BC and generate a cluster for each connected

component.
3. Recalculate BCs for all edges affected by the removal.
4. Repeat from step 2 until no edges remain.
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The output of this algorithm is a dendrogram providing a hierarchical clustering
of the graph nodes. In case of ties (i.e. several edges have the same BC), The
edge with more connections in their compounding nodes is deleted. From it, we
contract clusters containing at least two nodes. Moreover, it does not allow any
node to be a cluster individually. Therefore, the reduction ratio is at least of 2.
Afterwards, the corresponding nodes are contracted into only one vertex which
is labelled with the embedding function applied to these subgraphs. The idea is
that each node of the hierarchy represents a subgraph and provide information
about its topology. Finally, connected communities will create connected nodes.

2.3 Splitting of articulation points

There are cases where slight deformations in the input graphs can lead to com-
pletely different hierarchies. Figure 1 shows a common subgraph that can lead to
two possible hierarchies. This ambiguity can result in matching errors. Although
overlapping community detection techniques have been developed [13], they gen-
erate redundant information leading to a bad abstraction. This problem usually
comes from a symmetry in the original graph. To tackle with this problem we
define articulation points as follows:

Definition 2 (Articulation Point). A node in an undirected graph is an ar-
ticulation point if and only if removing it the number of connected components
of the graph increases.

Fig. 1. Ambiguity configuration that can significantly influence in the hierarchy con-
struction, in red two possible clusterings of nodes from the contraction function.

These nodes are of key importance, if they are classified in an incorrect
cluster, they can change significantly the topology. Thus, we propose to split
the articulation points of the graphs creating virtual nodes and disconnecting
them. Hence, the hierarchical representation is stabilised without introducing
noise to the data. The articulation points therefore divide and belong to two
or more clusters. Introducing this modification to the contraction function, a
more stable hierarchy is generated. Figure 2 shows the splitting process in a real
scenario where graphs represent skeleton features in handwritten word images.

3 Error tolerant hierarchical matching

As graph matching baseline, we have used the algorithm of bipartite graph match-
ing proposed by Riesen and Bunke in [16]. It uses a cost matrix that codifies the
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Fig. 2. From left to right: input graph, hierarchy for the proposed contraction function
and hierarchy splitting the articulation points. In red, the contracted nodes.

edit costs between the source and target nodes. Once the cost matrix is defined,
an edit operation is assigned to each node minimising the total cost. We have
used the same edit costs as [14]: node substitution cost is based in the distance,
the attributes and local structure of incident edges; edge substitution cost is
computed in terms of edge attribute, angle and length; predefined costs are de-
fined for node and edge insertion and deletion. Thus, there are 8 parameters: 3
(node substitution), 3 (edge substitution) and 2 (insertion and deletion).

To take advantage of the hierarchical representation, we propose a coarse-to-
fine graph matching approach. Let us denote Hi the graph representation at level
i = 1, . . . , N . It iteratively refines the matching starting at the coarsest level (i.e.
i = N). The comparison is performed using bipartite graph matching taking the
graph representation at level i without the hierarchical edges. If the distance at
level i is small enough, the matching is performed at the next level (i− 1). The
threshold to decide whether to advance in the hierarchy or not is application
dependent and a threshold is set experimentally. Starting the matching at the
abstract level avoids a high number of comparisons at more detailed levels where
the graphs are significantly bigger. Ideally, the last level is only used for graphs
that are very similar to the input one. The information about the matching level
is kept. Figure 3 shows the iterative process to decide whether the graphs match
or we can discard the comparisons in any of the abstract levels of the hierarchy.

Fig. 3. Coarse-to-fine matching scheme.
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4 Experiments

4.1 Datasets

Different databases have been used. First, the Columbia Object Image Library
(COIL-100) [12] and the Object DataBank (ODBK) [18] have been used to re-
produce the experiments proposed by Mousavi et al. [11] in an object classifica-
tion scenario. Second, the Barcelona Historical Handwritten Marriages (BH2M)
database has been used in a graph-based word spotting scenario in handwritten
documents where graphs are irregular and suffer from high distortions.

The COIL database consists of images of 100 different objects taken at 72
equally spaced poses whereas the ODBK database is formed by 209 3D objects
with 14 views. Graph nodes are extracted using the Harris corner detector. The
edges are generated using the Delaunay triangulation on these nodes. The final
graphs are not weighted for the edges and store the coordinates for the nodes.
For the experimentation, 15 and 50 classes, with maximum average number of
nodes are used. The graphs are divided into three sets, training, validation and
test of 360, 75 and 150 for the COIL dataset and 300, 150 and 150 for the ODBK
database. Figure 4 shows some examples coming from these databases.

Fig. 4. Example of objects from the COIL-100 and ODBK databases.

The BH2M database [8] corresponds to marriage licenses written between
1617 and 1619. It contains 174 handwritten pages divided into training (100),
validation (34) and test (40). The handwritten words are represented by at-
tributed graphs where nodes correspond to basic primitives called graphemes
[14]. Graphemes defined as convexities are described using the Blurred Shape
Model (BSM) descriptor [7]. The descriptors extracted from the training set are
used to create a codebook, from which node labels are set. Edges represent ad-
jacency relations between those primitives. Figure 2 shows an example of the
obtained graphs plotted on the image.

4.2 Results

The experiments have been divided into two challenges: object classification and
word spotting. Thresholds have been carefully selected using the validation set.

Object Classification: The use of a richer representation allows us to use
a simple classification approach (k-NN) achieving similar results than an scheme
with a less expressive representation and complex classifier, with the advantage
of reducing the computational cost. The selected embedding function encodes
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information of the Morgan Index of length 1 and 2 of the previous level. Three
approaches have been evaluated for the information selection: averaging the Mor-
gan Index and node position from all contracted nodes, averaging the Morgan
Index and selecting the most connected node, and taking the maximum Morgan
Index and the most connected node position.

Each level of the hierarchy has been validated alone and combined with the
original graph to explore the benefits of the proposed coarse-to-fine matching.
All the parameters for the distance computation have been chosen performing
a random search in the validation set. Since the graphs are generated using
a triangulation, there are not articulation points, therefore, both contraction
functions will lead to the same hierarchy.

Table 1 shows the performance for COIL and ODBK databases respectively.
For this experiment, the mean of the node positions and the Morgan Index is
used as embedding function. The last 3 rows correspond to the performance
reported by [11] using their hierarchical representation with the same graphs.

Table 1. Performance for Object Classification for COIL (left) and ODBK (right)
datasets. Rows are divided in 5 blocks: performance for each level; coarse-to-fine match-
ing using the 1st, 2on abstract levels and the combination of them; the final row-block
correspond the the performance reported by Mousavi et al.. Columns correspond to
the used threshold; accuracy of a k-NN classifier; percentatge of avoided comparisons
at the base level; time in seconds to perform all the comparisons.

COIL database

Thresh.
K-NN(%)

AC1(%) t(s)
1 3 5

Original - 100.00 100.00 98.00 - 2010
1st abst. - 72.67 74.67 72.67 - 167
2nd abst. - 38.00 39.33 44.67 - 13

1st abst.
0.1982 98.00 97.33 93.33 67.37 977
0.1680 90.00 89.33 82.67 95.41 289

2nd abst.
0.2153 100.00 99.33 96.67 33.68 1444
0.1895 97.33 94.67 93.33 58.99 937

1st abst. 0.1982
98.67 98.00 92.67 71.63 893

2nd abst. 0.2153

Original - 100.00 97.00 90.00
Mousavi
et al. [11]

1st abst. - 98.17 94.83 88.83
2nd abst. - 87.00 81.67 78.17

ODBK database

Thresh.
K-NN(%)

AC1(%) t(s)
1 3 5

Original - 79.33 76.00 74.00 - 34959
1st abst. - 58.67 58.00 54.67 - 1954
2nd abst. - 42.00 41.33 46.00 - 141

1st abst.
0.2396 79.33 76.00 74.00 48.18 22501
0.2130 78.67 75.33 72.00 79.10 10496

2nd abst.
0.2973 78.67 74.67 72.67 33.76 26111
0.2573 76.67 71.33 68.67 68.49 12228

1st abst. 0.2130
78.00 74.00 70.67 79.23 10292

2nd abst. 0.2973

Original - 66.67 65.33 63.33
Mousavi
et al. [11]

1st abst. - 66.67 62.67 62.00
2nd abst. - 60.00 55.33 53.33

Note that the big loss of performance between the abstract levels is corrected
choosing a good trade-off between them. We are able to prune more than the
50% of comparisons at the finest level while achieving good results. For instance,
choosing a conservative threshold, the time reduction is half, losing only 2%
of accuracy for the COIL database and 1.5 times faster maintaining the same
accuracy for the ODBK database. However, relaxing this threshold, we are able
to achieve a speed-up of 7x with a loss of 10% in accuracy for the COIL database
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and 3.3 times faster losing 1% in accuracy for ODBK. In a large scale scenario,
this is an acceptable loss to make an application much faster. Compared to
[11], our methodology do not achieve as good results as them in the different
abstraction levels. One of the main reasons is that our hierarchy is dynamically
constructed, not fixing the contraction degree and generating smaller graphs.

Word Spotting: Word spotting is the task of retrieving word images from
a document image similar to a given query (text or image). It is formulated as
a visual object detection problem. Most word spotting techniques use statistical
representations (e.g. HOG, SIFT) of the word images, e.g. [2]. The embedding
function consists in a vector that counts the number of paths of length up to k
from any node to a node with label i. The best configuration has been k = 0,
i.e. counting the number of nodes with label i (similar to a bag of words for
the nodes). As a retrieval problem the mean average precision (mAP) has been
used for the evaluation. Using the same parameters proposed in [14] in order
to compute the edit cost operations a mAP of 69.45% is achieved. Reproducing
the same experiment using the first level of the hierarchy the achieved mAP
is 35.67%. By splitting the articulation points as proposed in Section 2.3
achieves a mAP of 46.37%. Figure 5 shows the interpretation of the hierarchical
graph representation in the context of this database. Observe how the graphemes
are combined at each level to create more complex shapes like letters, bi-grams
and finally words.

Fig. 5. Hierarchy construction for the word “Dalmau”.

Table 2 shows a comparison between: the original graphs, the proposed frame-
work with two threshods, and graph indexation [15]. Recall (R) and Specificity
(SPC) are computed on the selected graphs using the first abstract level as clas-
sifier. Notice that the proposed hierarchical framework achieves high specificity
whereas keeping a better trade-off with the recall than the indexation approach.
Moreover, only losing 8% of mAP which is acceptable for a large scale retrieval
we are able to speed up the process almost 5 times.

1 AC stands for Avoided Comparison



Error-tolerant coarse-to-fine matching model for hierarchical graphs 9

Table 2. Comparison of the proposed hierarchical framework against an indexation
framework [15]. The mean average precision corresponds to the evaluation of the word
spotting problem; recall (R) and specificity (SPC) are computed on the selected graphs
using the hierarchy or the indexation respectively; finally, time per query is provided.

mAP (%) R (%) SPC (%) Time/query2 (s)

Original 69.45 100.00 0.00 19.58
+abst. (t=0.30) 68.27 90.91 69.98 12.46
+abst. (t=0.25) 61.71 67.93 97.91 3.94
+[15] (t=0.20) 66.13 92.54 46.13 16.34
+[15] (t=0.30) 61.15 83.55 63.04 12.74

5 Conclusions

This paper has presented a construction of a hierarchical graph representation by
means of contraction and embedding functions. Contraction uses graph cluster-
ing techniques to gather nodes and simplify the graph. Moreover, a modification
of the contraction function has been proposed to stabilise the hierarchy in certain
graphs. The proposed method is able to significantly reduce the graph size allow-
ing a fast graph comparison through a coarse-to-fine matching approach. This
methodology prunes the amount of comparisons in the fine level. The approach
has been exhaustively validated using several databases for of large-scale graph
retrieval. Compared to other related works, the proposed approach dynamically
gathers the nodes without predefining the number of clusters, therefore, the
ratio of reduction for each sample can change. Furthermore, the graph size is
extremely reduced from one level to another.

We conclude that hierarchical graph representations are a powerful tool in
the matching process. This representation gives information about the relation
of a group of nodes (those that are contracted) instead of the typical pair-wise
relations. Moreover, each level of the hierarchy can be enriched following other
indexation methodologies such as [15]. The future work will be focused on the
development of matching algorithms using the whole representation at once.
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