toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Fadi Dornaika; Bogdan Raducanu edit  doi
isbn  openurl
  Title Simultaneous 3D face pose and person-specific shape estimation from a single image using a holistic approach Type Conference Article
  Year 2009 Publication IEEE Workshop on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper presents a new approach for the simultaneous estimation of the 3D pose and specific shape of a previously unseen face from a single image. The face pose is not limited to a frontal view. We describe a holistic approach based on a deformable 3D model and a learned statistical facial texture model. Rather than obtaining a person-specific facial surface, the goal of this work is to compute person-specific 3D face shape in terms of a few control parameters that are used by many applications. The proposed holistic approach estimates the 3D pose parameters as well as the face shape control parameters by registering the warped texture to a statistical face texture, which is carried out by a stochastic and genetic optimizer. The proposed approach has several features that make it very attractive: (i) it uses a single grey-scale image, (ii) it is person-independent, (iii) it is featureless (no facial feature extraction is required), and (iv) its learning stage is easy. The proposed approach lends itself nicely to 3D face tracking and face gesture recognition in monocular videos. We describe extensive experiments that show the feasibility and robustness of the proposed approach.  
  Address Utah, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-5790 ISBN 978-1-4244-5497-6 Medium  
  Area Expedition Conference WACV  
  Notes OR;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ DoR2009b Serial 1256  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; David Rotger; Debora Gil edit   pdf
doi  openurl
  Title Image-based ECG sampling of IVUS sequences Type Conference Article
  Year 2008 Publication Proc. IEEE Ultrasonics Symp. IUS 2008 Abbreviated Journal  
  Volume Issue Pages 1330-1333  
  Keywords Longitudinal Motion; Image-based ECG-gating; Fourier analysis  
  Abstract Longitudinal motion artifacts in IntraVascular UltraSound (IVUS) sequences hinders a properly 3D reconstruction and vessel measurements. Most of current techniques base on the ECG signal to obtain a gated pullback without the longitudinal artifact by using a specific hardware or the ECG signal itself. The potential of IVUS images processing for phase retrieval still remains little explored. In this paper, we present a fast forward image-based algorithm to approach ECG sampling. Inspired on the fact that maximum and minimum lumen areas are related to end-systole and end-diastole, our cardiac phase retrieval is based on the analysis of tissue density of mass along the sequence. The comparison between automatic and manual phase retrieval (0.07 ± 0.07 mm. of error) encourages a deep validation contrasting with ECG signals.  
  Address Beijing (China)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ HRG2008 Serial 1553  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Albert Teis edit   pdf
doi  openurl
  Title How Do Conservation Laws Define a Motion Suppression Score in In-Vivo Ivus Sequences? Type Conference Article
  Year 2007 Publication Proc. IEEE Ultrasonics Symp Abbreviated Journal  
  Volume Issue Pages 2231-2234  
  Keywords validation standards; IVUS motion compensation; conservation laws.  
  Abstract Evaluation of arterial tissue biomechanics for diagnosis and treatment of cardiovascular diseases is an active research field in the biomedical imaging processing area. IntraVascular UltraSound (IVUS) is a unique tool for such assessment since it reflects tissue morphology and deformation. A proper quantification and visualization of both properties is hindered by vessel structures misalignments introduced by cardiac dynamics. This has encouraged development of IVUS motion compensation techniques. However, there is a lack of an objective evaluation of motion reduction ensuring a reliable clinical application This work reports a novel score, the Conservation of Density Rate (CDR), for validation of motion compensation in in-vivo pullbacks. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; while results in in vivo pullbacks show its reliability in clinical cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ HTG2007 Serial 1550  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Jaume Garcia; Enric Marti edit   pdf
doi  openurl
  Title Image-based Cardiac Phase Retrieval in Intravascular Ultrasound Sequences Type Journal Article
  Year 2011 Publication IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Abbreviated Journal T-UFFC  
  Volume 58 Issue 1 Pages 60-72  
  Keywords 3-D exploring; ECG; band-pass filter; cardiac motion; cardiac phase retrieval; coronary arteries; electrocardiogram signal; image intensity local mean evolution; image-based cardiac phase retrieval; in vivo pullbacks acquisition; intravascular ultrasound sequences; longitudinal motion; signal extrema; time 36 ms; band-pass filters; biomedical ultrasonics; cardiovascular system; electrocardiography; image motion analysis; image retrieval; image sequences; medical image processing; ultrasonic imaging  
  Abstract Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-3010 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS Approved no  
  Call Number IAM @ iam @ HGG2011 Serial 1546  
Permanent link to this record
 

 
Author Zeynep Yucel; Albert Ali Salah; Çetin Meriçli; Tekin Meriçli; Roberto Valenti; Theo Gevers edit  doi
openurl 
  Title Joint Attention by Gaze Interpolation and Saliency Type Journal
  Year 2013 Publication IEEE Transactions on cybernetics Abbreviated Journal T-CIBER  
  Volume 43 Issue 3 Pages 829-842  
  Keywords  
  Abstract Joint attention, which is the ability of coordination of a common point of reference with the communicating party, emerges as a key factor in various interaction scenarios. This paper presents an image-based method for establishing joint attention between an experimenter and a robot. The precise analysis of the experimenter's eye region requires stability and high-resolution image acquisition, which is not always available. We investigate regression-based interpolation of the gaze direction from the head pose of the experimenter, which is easier to track. Gaussian process regression and neural networks are contrasted to interpolate the gaze direction. Then, we combine gaze interpolation with image-based saliency to improve the target point estimates and test three different saliency schemes. We demonstrate the proposed method on a human-robot interaction scenario. Cross-subject evaluations, as well as experiments under adverse conditions (such as dimmed or artificial illumination or motion blur), show that our method generalizes well and achieves rapid gaze estimation for establishing joint attention.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-2267 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ YSM2013 Serial 2363  
Permanent link to this record
 

 
Author Sergio Escalera; Alicia Fornes; Oriol Pujol; Josep Llados; Petia Radeva edit  doi
openurl 
  Title Circular Blurred Shape Model for Multiclass Symbol Recognition Type Journal Article
  Year 2011 Publication IEEE Transactions on Systems, Man and Cybernetics (Part B) (IEEE) Abbreviated Journal TSMCB  
  Volume 41 Issue 2 Pages 497-506  
  Keywords  
  Abstract In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared among correlogram regions, where a prior blurring degree defines the level of distortion allowed in the symbol, making the descriptor tolerant to irregular deformations. Moreover, the descriptor is rotation invariant by definition. We validate the effectiveness of the proposed descriptor in both the multiclass symbol recognition and symbol detection domains. In order to perform the symbol detection, the descriptors are learned using a cascade of classifiers. In the case of multiclass categorization, the new feature space is learned using a set of binary classifiers which are embedded in an error-correcting output code design. The results over four symbol data sets show the significant improvements of the proposed descriptor compared to the state-of-the-art descriptors. In particular, the results are even more significant in those cases where the symbols suffer from elastic deformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1083-4419 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; DAG;HuPBA Approved no  
  Call Number Admin @ si @ EFP2011 Serial 1784  
Permanent link to this record
 

 
Author Fadi Dornaika; Bogdan Raducanu edit  doi
openurl 
  Title Three-Dimensional Face Pose Detection and Tracking Using Monocular Videos: Tool and Application Type Journal Article
  Year 2009 Publication IEEE Transactions on Systems, Man and Cybernetics part B Abbreviated Journal TSMCB  
  Volume 39 Issue 4 Pages 935–944  
  Keywords  
  Abstract Recently, we have proposed a real-time tracker that simultaneously tracks the 3-D head pose and facial actions in monocular video sequences that can be provided by low quality cameras. This paper has two main contributions. First, we propose an automatic 3-D face pose initialization scheme for the real-time tracker by adopting a 2-D face detector and an eigenface system. Second, we use the proposed methods-the initialization and tracking-for enhancing the human-machine interaction functionality of an AIBO robot. More precisely, we show how the orientation of the robot's camera (or any active vision system) can be controlled through the estimation of the user's head pose. Applications based on head-pose imitation such as telepresence, virtual reality, and video games can directly exploit the proposed techniques. Experiments on real videos confirm the robustness and usefulness of the proposed methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ DoR2009a Serial 1218  
Permanent link to this record
 

 
Author David Masip; Agata Lapedriza; Jordi Vitria edit  doi
openurl 
  Title Boosted Online Learning for Face Recognition Type Journal Article
  Year 2009 Publication IEEE Transactions on Systems, Man and Cybernetics part B Abbreviated Journal TSMCB  
  Volume 39 Issue 2 Pages 530–538  
  Keywords  
  Abstract Face recognition applications commonly suffer from three main drawbacks: a reduced training set, information lying in high-dimensional subspaces, and the need to incorporate new people to recognize. In the recent literature, the extension of a face classifier in order to include new people in the model has been solved using online feature extraction techniques. The most successful approaches of those are the extensions of the principal component analysis or the linear discriminant analysis. In the current paper, a new online boosting algorithm is introduced: a face recognition method that extends a boosting-based classifier by adding new classes while avoiding the need of retraining the classifier each time a new person joins the system. The classifier is learned using the multitask learning principle where multiple verification tasks are trained together sharing the same feature space. The new classes are added taking advantage of the structure learned previously, being the addition of new classes not computationally demanding. The present proposal has been (experimentally) validated with two different facial data sets by comparing our approach with the current state-of-the-art techniques. The results show that the proposed online boosting algorithm fares better in terms of final accuracy. In addition, the global performance does not decrease drastically even when the number of classes of the base problem is multiplied by eight.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1083–4419 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ MLV2009 Serial 1155  
Permanent link to this record
 

 
Author Akshita Gupta; Sanath Narayan; Salman Khan; Fahad Shahbaz Khan; Ling Shao; Joost Van de Weijer edit  doi
openurl 
  Title Generative Multi-Label Zero-Shot Learning Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 12 Pages 14611-14624  
  Keywords Generalized zero-shot learning; Multi-label classification; Zero-shot object detection; Feature synthesis  
  Abstract Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. When multiple objects occur jointly in a single image, a critical question is how to effectively fuse multi-class information. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embeddings. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Our cross-level fusion-based generative approach outperforms the state-of-the-art on three zero-shot benchmarks: NUS-WIDE, Open Images and MS COCO. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods.  
  Address December 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; PID2021-128178OB-I00 Approved no  
  Call Number Admin @ si @ Serial 3853  
Permanent link to this record
 

 
Author Swathikiran Sudhakaran; Sergio Escalera; Oswald Lanz edit   pdf
doi  openurl
  Title Gate-Shift-Fuse for Video Action Recognition Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 9 Pages 10913-10928  
  Keywords Action Recognition; Video Classification; Spatial Gating; Channel Fusion  
  Abstract Convolutional Neural Networks are the de facto models for image recognition. However 3D CNNs, the straight forward extension of 2D CNNs for video recognition, have not achieved the same success on standard action recognition benchmarks. One of the main reasons for this reduced performance of 3D CNNs is the increased computational complexity requiring large scale annotated datasets to train them in scale. 3D kernel factorization approaches have been proposed to reduce the complexity of 3D CNNs. Existing kernel factorization approaches follow hand-designed and hard-wired techniques. In this paper we propose Gate-Shift-Fuse (GSF), a novel spatio-temporal feature extraction module which controls interactions in spatio-temporal decomposition and learns to adaptively route features through time and combine them in a data dependent manner. GSF leverages grouped spatial gating to decompose input tensor and channel weighting to fuse the decomposed tensors. GSF can be inserted into existing 2D CNNs to convert them into an efficient and high performing spatio-temporal feature extractor, with negligible parameter and compute overhead. We perform an extensive analysis of GSF using two popular 2D CNN families and achieve state-of-the-art or competitive performance on five standard action recognition benchmarks.  
  Address 1 Sept. 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ SEL2023 Serial 3814  
Permanent link to this record
 

 
Author Javier Selva; Anders S. Johansen; Sergio Escalera; Kamal Nasrollahi; Thomas B. Moeslund; Albert Clapes edit  doi
openurl 
  Title Video transformers: A survey Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 11 Pages 12922-12943  
  Keywords Artificial Intelligence; Computer Vision; Self-Attention; Transformers; Video Representations  
  Abstract Transformer models have shown great success handling long-range interactions, making them a promising tool for modeling video. However, they lack inductive biases and scale quadratically with input length. These limitations are further exacerbated when dealing with the high dimensionality introduced by the temporal dimension. While there are surveys analyzing the advances of Transformers for vision, none focus on an in-depth analysis of video-specific designs. In this survey, we analyze the main contributions and trends of works leveraging Transformers to model video. Specifically, we delve into how videos are handled at the input level first. Then, we study the architectural changes made to deal with video more efficiently, reduce redundancy, re-introduce useful inductive biases, and capture long-term temporal dynamics. In addition, we provide an overview of different training regimes and explore effective self-supervised learning strategies for video. Finally, we conduct a performance comparison on the most common benchmark for Video Transformers (i.e., action classification), finding them to outperform 3D ConvNets even with less computational complexity.  
  Address 1 Nov. 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ SJE2023 Serial 3823  
Permanent link to this record
 

 
Author Marc Masana; Xialei Liu; Bartlomiej Twardowski; Mikel Menta; Andrew Bagdanov; Joost Van de Weijer edit   pdf
doi  openurl
  Title Class-incremental learning: survey and performance evaluation Type Journal Article
  Year 2022 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume Issue Pages  
  Keywords  
  Abstract For future learning systems incremental learning is desirable, because it allows for: efficient resource usage by eliminating the need to retrain from scratch at the arrival of new data; reduced memory usage by preventing or limiting the amount of data required to be stored -- also important when privacy limitations are imposed; and learning that more closely resembles human learning. The main challenge for incremental learning is catastrophic forgetting, which refers to the precipitous drop in performance on previously learned tasks after learning a new one. Incremental learning of deep neural networks has seen explosive growth in recent years. Initial work focused on task incremental learning, where a task-ID is provided at inference time. Recently we have seen a shift towards class-incremental learning where the learner must classify at inference time between all classes seen in previous tasks without recourse to a task-ID. In this paper, we provide a complete survey of existing methods for incremental learning, and in particular we perform an extensive experimental evaluation on twelve class-incremental methods. We consider several new experimental scenarios, including a comparison of class-incremental methods on multiple large-scale datasets, investigation into small and large domain shifts, and comparison on various network architectures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MLT2022 Serial 3538  
Permanent link to this record
 

 
Author Arash Akbarinia; C. Alejandro Parraga edit   pdf
doi  openurl
  Title Colour Constancy Beyond the Classical Receptive Field Type Journal Article
  Year 2018 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 40 Issue 9 Pages 2081 - 2094  
  Keywords  
  Abstract The problem of removing illuminant variations to preserve the colours of objects (colour constancy) has already been solved by the human brain using mechanisms that rely largely on centre-surround computations of local contrast. In this paper we adopt some of these biological solutions described by long known physiological findings into a simple, fully automatic, functional model (termed Adaptive Surround Modulation or ASM). In ASM, the size of a visual neuron's receptive field (RF) as well as the relationship with its surround varies according to the local contrast within the stimulus, which in turn determines the nature of the centre-surround normalisation of cortical neurons higher up in the processing chain. We modelled colour constancy by means of two overlapping asymmetric Gaussian kernels whose sizes are adapted based on the contrast of the surround pixels, resembling the change of RF size. We simulated the contrast-dependent surround modulation by weighting the contribution of each Gaussian according to the centre-surround contrast. In the end, we obtained an estimation of the illuminant from the set of the most activated RFs' outputs. Our results on three single-illuminant and one multi-illuminant benchmark datasets show that ASM is highly competitive against the state-of-the-art and it even outperforms learning-based algorithms in one case. Moreover, the robustness of our model is more tangible if we consider that our results were obtained using the same parameters for all datasets, that is, mimicking how the human visual system operates. These results might provide an insight on how dynamical adaptation mechanisms contribute to make object's colours appear constant to us.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; 600.068; 600.072 Approved no  
  Call Number Admin @ si @ AkP2018a Serial 2990  
Permanent link to this record
 

 
Author Sergio Escalera; Jordi Gonzalez; Xavier Baro; Jamie Shotton edit  doi
openurl 
  Title Guest Editor Introduction to the Special Issue on Multimodal Human Pose Recovery and Behavior Analysis Type Journal Article
  Year 2016 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 28 Issue Pages 1489 - 1491  
  Keywords  
  Abstract The sixteen papers in this special section focus on human pose recovery and behavior analysis (HuPBA). This is one of the most challenging topics in computer vision, pattern analysis, and machine learning. It is of critical importance for application areas that include gaming, computer interaction, human robot interaction, security, commerce, assistive technologies and rehabilitation, sports, sign language recognition, and driver assistance technology, to mention just a few. In essence, HuPBA requires dealing with the articulated nature of the human body, changes in appearance due to clothing, and the inherent problems of clutter scenes, such as background artifacts, occlusions, and illumination changes. These papers represent the most recent research in this field, including new methods considering still images, image sequences, depth data, stereo vision, 3D vision, audio, and IMUs, among others.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE;MV; Approved no  
  Call Number Admin @ si @ Serial 2851  
Permanent link to this record
 

 
Author Ciprian Corneanu; Marc Oliu; Jeffrey F. Cohn; Sergio Escalera edit   pdf
doi  openurl
  Title Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition: History Type Journal Article
  Year 2016 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 28 Issue 8 Pages 1548-1568  
  Keywords Facial expression; affect; emotion recognition; RGB; 3D; thermal; multimodal  
  Abstract Facial expressions are an important way through which humans interact socially. Building a system capable of automatically recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about trends, important questions and future lines of research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ COC2016 Serial 2718  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: