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Abstract—Facial expressions are an important way through which humans interact socially. Building a system capable of automatically

recognizing facial expressions from images and video has been an intense field of study in recent years. Interpreting such expressions

remains challenging and much research is needed about the way they relate to human affect. This paper presents a general overview

of automatic RGB, 3D, thermal and multimodal facial expression analysis. We define a new taxonomy for the field, encompassing all

steps from face detection to facial expression recognition, and describe and classify the state of the art methods accordingly. We also

present the important datasets and the bench-marking of most influential methods. We conclude with a general discussion about

trends, important questions and future lines of research.
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1 INTRODUCTION

FACIAL expressions (FE) are vital signaling systems of
affect, conveying cues about the emotional state of per-

sons. Together with voice, language, hands and posture of
the body, they form a fundamental communication system
between humans in social contexts. Automatic FE recognition
(AFER) is an interdisciplinary domain standing at the crossing
of behavioral science, neurology, and artificial intelligence.

Studies of the face were greatly influenced in premodern
times by popular theories of physiognomy and creationism.
Physiognomy assumed that a person’s character or person-
ality could be judged by their outer appearance, especially
the face [1]. Leonardo Da Vinci was one of the first to refute
such claims stating they were without scientific support [2].
In the 17th century in England, John Buwler studied human
communication with particular interest in the sign language
of persons with hearing impairment. His book Pathomyoto-
mia or Dissection of the significant Muscles of the Affections of
the Mind was the first consistent work in the English lan-
guage on the muscular mechanism of FE [3]. About two cen-
turies later, influenced by creationism, Sir Charles Bell
investigated FE as part of his research on sensory and motor
control. He believed that FE was endowed by the Creator
solely for human communication. Subsequently, Duchenne
de Boulogne conducted systematic studies on how FEs

are produced [4]. He published beautiful pictures of some-
times strange FEs obtained by electrically stimulating facial
muscles (see Fig. 1). Approximately in the same historical
period, Charles Darwin firmly placed FE in an evolutionary
context [5]. This marked the beginning of modern research
of FEs. More recently, important advancements were made
through the works of researchers like Carroll Izard and
Paul Ekman who inspired by Darwin performed seminal
studies of FEs [6], [7], [8].

In the last years excellent surveys on automatic facial
expression analysis have been published [9], [10], [11], [12].
For a more processing oriented review of the literature the
reader is mainly referred to [10], [12]. For an introduction
into AFER in natural conditions the reader is referred to [9].
Readers interested mainly in 3D AFER, should refer to the
work of Sandbach et al. [11].

In this survey, we define a comprehensive taxonomy of
automatic RGB1, 3D, thermal, and multimodal computer
vision approaches for AFER. The definition and choices of
the different components are analyzed and discussed. This
is complemented with a section dedicated to the historical
evolution of FE approaches and an in-depth analysis of lat-
est trends. Additionally, we provide an introduction into
affect inference from the face from a evolutionary perspec-
tive. We emphasize research produced since the last major
review of AFER in 2009 [9]. Our focus on inferring affect,
defining a comprehensive taxonomy and treating different
modalities is aiming at proposing a more general perspec-
tive on AFER and its current trends.

The paper is organized as follows: Section 2 discusses
affect in terms of FEs. Section 3 presents a taxonomy of auto-
matic RGB, 3D, thermal and multimodal recognition of FEs.
Section 4 reviews the historical evolution in AFER and
focuses on recent important trends. Finally, Section 5 con-
cludes with a general discussion.
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1. RGB: Additive color model in which red, green, and blue light are
combined to reproduce a broad array of colors.
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2 INFERRING AFFECT FROM FES

Depending on context FEs may have varied communicative
functions. They can regulate conversations by signaling
turn-taking, convey biometric information, express intensity
of mental effort, and signal emotion. By far, the latter has
been the one most studied.

2.1 Describing Affect

Attempts to describe human emotion mainly fall into two
approaches: categorical and dimensional description.

2.1.1 Categorical Description of Affect

Classifying emotions into a set of distinct classes that can be
recognized and described easily in daily language has been
common since at least the time of Darwin. More recently,
influenced by the research of Paul Ekman [7], [13] a domi-
nant view upon affect is based on the underlying assump-
tion that humans universally express a set of discrete
primary emotions which include happiness, sadness, fear,
anger, disgust, and surprise (see Fig. 2). Mainly because of
its simplicity and its universality claim, the universal pri-
mary emotions hypothesis has been extensively exploited in
affective computing.

2.1.2 Dimensional Description of Affect

Another popular approach is to place a particular emotion
into a space having a limited set of dimensions [15], [16],
[17]. These dimensions include valence (how pleasent or
unpleasent a feeling is) activation2 (how likely is the person
to take action under the emotional state) and control (the
sense of control over the emotion). Due to the higher dim-
ensionality of such descriptions they can potentially describe
more complex and subtle emotions. Unfortunately, the rich-
ness of the space is more difficult to use for automatic recog-
nition systems because it can be challenging to link such
described emotion to a FE. Usually automatic systems based
on dimensional representation of emotion simplify the prob-
lem by dividing the space in a limited set of categories like
positive vs negative or quadrants of the 2D space [9].

2.2 An Evolutionist Approach to FE of Affect

At the end of the 19th century Charles Darwin wrote The
Expression of the emotion in Man and Animals, which largely
inspired the study of FE of emotion. Darwin proposed that

FEs are the residual actions of more complete behavioral
responses to environmental challenges. Constricting the nos-
trils in disgust served to reduce inhalation of noxious or
harmful substances. Widening the eyes in surprise increased
the visual field to see an unexpected stimulus. Darwin
emphasized the adaptive functions of FEs.

More recent evolutionary models have come to empha-
size their communicative functions [18]. [19] proposed a pro-
cess of exaptation in which adaptations (such as constricting
the nostrils in disgust) became recruited to serve communi-
cative functions. Expressions (or displays) were ritualized to
communicate information vital to survival. In this way, two
abilities were selected for their survival advantages. One
was to automatically display exaggerated forms of the origi-
nal expressions; the other was to automatically interpret the
meaning of these expressions. From this perspective, disgust
communicates potentially aversive foods or moral viola-
tions; sadness communicates request for comfort. While
some aspects of evolutionary accounts of FE are controver-
sial [20], strong evidence exists in their support. Evidence
includes universality of FEs of emotion, physiological speci-
ficity of emotion, and automatic appraisal and unbidden
occurrence [21], [22], [23].

Universality. There is a high degree of consistency in the
facial musculature among peoples of the world. The muscles
necessary to express primary emotions are found universally
[24], [25], [26], and homologous muscles have been docu-
mented in non-human primates [27], [28], [29]. Similar FEs in
response to species-typical signals have been observed in
both human and non-human primates [30].

Recognition. Numerous perceptual judgment studies sup-
port the hypothesis that FEs are interpreted similarly at lev-
els well above chance in both Western and non-Western
societies. Even critics of strong evolutionary accounts [31],
[32] find that recognition of FEs of emotion are universally
above chance and in many cases quite higher.

Physiological specificity. Physiological specificity appears
to exist as well. Using directed facial action tasks to elicit
basic emotions, Levenson et al. [33] found that HR, GSR,
and skin temperature systematically varied with the hypo-
thesized functions of basic emotions. In anger, blood flow to
the hands increased to prepare for fight. For the central ner-
vous system, patterns of prefrontal and temporal asymme-
try systematically differed between enjoyment and disgust
when measured using the facial action coding system (FACS)
[34]. Left-frontal asymmetry was greater during enjoyment;
right frontal asymmetry was greater during disgust. These
findings support the view that emotion expressions reliably
signal action tendencies [35], [36].

Subjective experience. While not critical to an evolutionary
account of emotion, evidence exists as well for concordance
between subjective experience and FE of emotion [37], [38].
However, more work is needed in this regard. Until recently,
manual annotation of FE or facial EMGwere the only means

Fig. 2. Primary emotions expressed on the face. From left to right:
disgust, fear, joy, surprise, sadness, anger. From [14].

Fig. 1. In the 19th century, Duchenne de Boulogne conducted experi-
ments on how FEs are produced. From [4].

2. Also known as arousal.
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to measure FE of emotion. Because manual annotation is
labor intensive, replication of studies is limited.

In summary, the study of FE initially was strongly moti-
vated by evolutionary accounts of emotion. Evidence has
broadly supported those accounts. However, FE more bro-
adly figures in cultural bio-psycho-social accounts of emo-
tion. Facial expression signals emotion, communicative
intent, individual differences in personality, and psychiatric
and medical status, and helps to regulate social interaction.
With the advent of automated methods of AFER, we are
poised to make major discoveries in these areas.

2.3 Applications

The ability to automatically recognize FEs and infer affect
has a wide range of applications. AFER, usually combined
with speech, gaze and standard interactions like mouse
movements and keystrokes can be used to build adaptive
environments by detecting the user’s affective states [39],
[40]. Similarly, one can build socially aware systems [41],
[42], or robots with social skills like Sony’s AIBO and ATR’s
Robovie [43]. Detecting students’ frustration can help
improve e-learning experiences [44]. Gaming experience can

also be improved by adapting difficulty, music, characters or
mission according to the player’s emotional responses [45],
[46], [47]. Pain detection is used for monitoring patient prog-
ress in clinical settings [48], [49], [50]. Detection of truthful-
ness or potential deception can be used during police
interrogations or job interviews [51]. Monitoring drowsiness
or attentive and emotional status of the driver is critical for
the safety and comfort of driving [52]. Depression recogni-
tion from FEs is a very important application in analysis of
psychological distress [53], [54], [55]. Finally, in recent years
successful commercial applications like Emotient [56], Affec-
tiva [57], RealEyes [58] and Kairos [59] perform large-scale
internet-based assessments of viewer reactions to ads and
relatedmaterial for predicting buying behaviour.

3 A TAXONOMY FOR RECOGNIZING FES

In Fig. 3 we propose a taxonomy for AFER, built along two
main components: parametrization and recognition of FEs.
These are important components of an automatic FE recog-
nition system, regardless of the data modality.

Parametrization deals with defining coding schemes for
describing FEs. Coding schemes may be categorized into

Fig. 3. Taxonomy for AFER in Computer Vision. Red corresponds to RGB, green to 3D, and purple to thermal.
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two main classes. Descriptive coding schemes parametrize
FE in terms of surface properties. They focus on what the
face can do. Judgmental coding schemes describe FEs in
terms of the latent emotions or affects that are believed to
generate them. Please refer to Section 3.1 for further details.

An automatic facial analysis system from images or video
usually consists of four main parts. First, faces have to be
localized in the image (Section 3.2.1). Second, formanymeth-
ods a face registration has to be performed. During registra-
tion, fiducial points (e.g., the corners of the mouth or the
eyes) are detected, allowing for a particularization of the face
to different poses and deformations (Section 3.2.2). In a third
step, features are extracted from the face with techniques
dependent on the data modality. A common taxonomy is
described for the three considered modalities: RGB, 3D
and thermal. The approaches are divided into geometric or
appearance based, global or local, and static or dynamic
(Section 3.2.3). Other approaches use a combination of these
categories. Finally, machine learning techniques are used to
discriminate between FEs. These techniques can predict a
categorical expression or represent the expression in a con-
tinuous output space, and can model or not temporal infor-
mation about the dynamics of FEs (Section 3.2.4).

An additional step, multimodal fusion (Section 3.2.5), is
required when dealing with multiple data modalities, usu-
ally coming from other sources of information such as
speech and physiological data. This step can be approached
in four different ways, depending on the stage at which it is
introduced: direct, early, late and sequential fusion.

Modern FE recognition techniques rely on labeled data to
learn discriminative patterns for recognition and, in many
cases, feature extraction. For this reason we introduce in
Section 3.3 the main datasets for all three modalities. These
are characterized based on the content of the labeled data,
the capture conditions and participants distribution.

3.1 Parameterization of FEs

Descriptive coding schemes focus on what the face can do.
The most well known examples of such systems are FACS
and face animation paramters (FAP). Perhaps the most influen-
tial, FACS (1978; 2002) seeks to describe nearly all possible
FEs in terms of anatomically-based facial actions [171], [172].
The FEs are coded in action units (AU), which define the con-
traction of one or more facial muscles (see Fig. 4). FACS also
provides the rules for visual detection of AUs and their tem-
poral segments (onset, apex, offset, ordinal intensity). For
relating FEs to emotions, Ekman and Friesen later developed
the EMFACS (Emotion FACS), which scores facial actions
relevant for particular emotion displays [173]. FAP is now
part of the MPEG4 standard and is used for synthesizing FE
for animating virtual faces. Is is rarely used to parametrize
FEs for recognition purposes [136], [137]. Its coding scheme
is based on the position of key feature control points in a
mesh model of the face. Maximally discriminative facial

movement coding system (MAX) [174], another descriptive sys-
tem, is less granular and less comprehensive. Brow raise in
MAX, for instance, corresponds to two separate actions in
FACS. It is a truly sign-based approach as it makes no infer-
ences about underlying emotions.

Judgmental coding schemes, on the other hand, describe
FEs in terms of the latent emotions or affects that are
believed to generate them. Because a single emotion or
affect may result in multiple expressions, there is no 1:1 cor-
respondence between what the face does and its emotion
label. A hybrid approach is to define emotion labels in terms
of specific signs rather than latent emotions or affects.
Examples are EMFACS and AFFEX [175]. In each, expres-
sions related to each emotion are defined descriptively. As
an example, enjoyment may be defined by an expression
displaying an oblique lip-corner pull co-occurring with
cheek raise. Hybrid systems are similar to judgment-based
systems in that there is an assumed 1:1 correspondence
between emotion labels and signs that describe them. For
this reason, we group hybrid approaches with judgment-
based systems.

3.2 Recognition of FEs

An AFER system consists of four steps: face detection, face
registration, feature extraction and expression recognition.

3.2.1 Face Localization

We discuss two main face localization approaches. Detec-
tion approaches locate the faces present in the data, obtain-
ing their bounding box or geometry. Segmentation assigns a
binary label to each pixel. The reader is referred to [176] for
an extensive review on face localization approaches.

For RGB images, Viola and Jones [60] still is one of the
most used algorithms [10], [61], [177]. It is based on a cas-
cade of weak classifiers, but while fast, it has problems with
occlusions and large pose variations [10]. Some methods
overcome these weaknesses by considering multiple pose-
specific detectors and either a pose router [61] or a probabi-
listic approach [178]. Other approaches include convolutional
neural networks (CNN) [63] and support vector machines
(SVM) applied over HOG features [62]. While the later
achieves a lower accuracy when compared to Viola and
Jones, the CNN approach in [63] allows for comparable
accuracies over wide range of poses.

Regarding face segmentation, early works usually exploit
color and texture information along with ellipsoid fitting
[66], [67], [68]. A posterior step is introduced in [69] to cor-
rect prediction gaps and wrongly labeled background pix-
els. Some works use segmentation to reduce the search
space during face detection [179], while others use a face
saliency map (FSM) [70] to fit a geometric model of the face
and perform a boundary correction procedure.

For 3D images [64], [65] use curvature features to detect
high curvature areas such as the nose tip and eye cavities.
Segmentation is also applied to 3D face detection. [73] uses
k-means to discard the background and locates candidate
faces through edge and ellipsoid detection, selecting the
highest probability fitting. In [72], random forests (RFs) are
used to assign a body part label to each pixel, including
the face. This approach was latter extended in [71], using
graph cuts (GC) to optimize the random forest probabilities.

Fig. 4. Examples of lower and upper face AUs in FACS. Reprinted from
[14].
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While RGB techniques are applicable to thermal images,
segmenting the image according to the radiant emittance of
each pixel [74], [75] usually is enough.

3.2.2 Face Registration

Once the face is detected, fiducial points (aka. landmarks)
are located (see Fig. 5). This step is necessary in many AFER
approaches in order to rotate or frontalize the face. Equiva-
lently, in the 3D case the face geometry is registered against
a 3D geometric model. A thorough review on this subject is
out of the scope of this work. The reader is referred to [180]
and [181] for 2D and 3D surveys respectively.

Different approaches are used for grayscale, RGB and
near-infrared modalities, and for 3D. In the first case, the
objective is to exploit visual information to perform feature
detection, a process usually referred to as landmark localiza-
tion or face alignment. In the 3D case, the acquired geometry
is registered to a shape model through a process known as
face registration, which minimizes the distance between
both. While these processes are distinct, sometimes the
same name is used in the literature. To prevent confusion,
this work refers to them as 2D and 3D face registration.

2D face registration. Active appearance models (AAM) [77] is
one of the most used methods for 2D face registration. It is
an extension of active shape models (ASM) [76] which encodes
both geometry and intensity information. 3D versions of
AAM have also been proposed [78], but making alignment
much slower due to the impossibility of decoupling shape
and appearance fitting. This limitation is circumvented in
[79], where a 2D model is fit while a 3D one restricts its
shape variations. Another possibility is to generate a 2D
model from 3D data through a continuous, uniform sam-
pling of its rotations [182].

The real-time method of [80] uses conditional regression
forests (CRF) over a dense grid, extracting intensity features
and Gabor wavelets at each cell. A more recent set of real-
time methods is based on regressing the shape through a
cascade of linear regressors. As an example, supervised
descent method (SDM) [81] uses simplified SIFT features
extracted at each landmark estimate.

3D face registration. In the 3D case, the goal is to find a
geometric correspondence between the captured geometry
and a model. Iterative closest point (ICP) [82] iteratively aligns
the closest points of two shapes. In [83], visible patches of
the face are detected and used to discard obstructions before
using ICP for alignment. In the case of non-rigid registra-
tion, it allows the matched 3D model to deform. In [84], a
correspondence is established manually between landmarks
of the model and the captured data, using a thin plate spline
(TPS) model to deform the shape. [85] improves the method
by using multi-resolution fitting, an adaptive correspon-
dence search range, and enforcing symmetry constraints.

[86] uses a coarse-to-fine approach based on the shape
curvature. It initially locates the nose tip and eye cavities,
afterwards localizing finer features. Similarly, [87] first finds
the symmetry axis of the face in order to facilitate feature
matching. Other techniques include registering a 3D Morph-
able Model 3DMM [88], 3D-ASM [89] or deformable 2D trian-
gular mesh [90], and registering a 3D model through
Simulated Annealing (SA) [91].

3.2.3 Feature Extraction

Extracted features can be divided into predesigned and
learned. Predesigned features are hand-crafted to extract
relevant information. Learned features are automatically
learned from the training data. This is the case of deep
learning approaches, which jointly learn the feature extrac-
tion and classficiation/regression weights. These categories
are further divided into global and local, where global fea-
tures extract information from the whole facial region, and
local ones from specific regions of interest, usually corre-
sponding to AUs. Features can also be split into static and
dynamic, with static features describing a single frame or
image and dynamic ones including temporal information.

Predesigned features can also be divided into appearance
and geometrical. Appearance features use the intensity
information of the image, while geometrical ones measure
distances, deformations, curvatures and other geometric
properties. This is not the case of learned features, for which
the nature of the extracted information is usually unknown.

Geometric features describe faces through distances and
shapes. These cannot be extracted from thermal data, since
dull facial features difficult the precise localization of land-
marks. Global geometric features, for both RGB and 3D
modalities, usually describe the face deformation based on
the location of specific fiducial points. For RGB, [114] uses
the distance between fiducial points. The deformation
parameters of a mesh model are used in [115], [116]. Simi-
larly, for 3D data [117] use the distance between pairs of 3D
landmarks, while [92] uses the deformation parameters of
an EDM. Manifolds are used in [119] to describe the shape
deformation of a fitted 3D mesh separately at each frame of
a video sequence through Lipschitz embedding.

The use of 3D data allows generating 2D representations
of facial geometry such as depth maps [120], [121]. In [122]
local binary patterns (LBP) are computed over different 2D
representations, extracting histograms from them. Similarly,
[123] uses SVD to extract the 4 principal components from
LBP histograms. In [124], the geometry is described through
the conformal factor image (CFI) and mean curvature image
(MCI). [125] captures the mean curvatures at each location
with differential mean curvature maps (DMCM), using HOG
histograms to describe the resulting map.

In the dynamic case the goal is to describe how the face
geometry changes over time. For RGB data, facial motions
are estimated from color or intensity information, usually
through Optical flow [126]. Other descriptors such as motion
history images (MHI) and free-form deformations (FFDs) are
also used [127]. In the 3D case, much denser geometric data
facilitates a global description of the facial motions. This is
done either through deformation descriptors or motion vec-
tors. [128] extracts and segments level curvatures, describ-
ing the deformation of each segment. FFDs are used in [129]

Fig. 5. Sample images from the LFPW dataset aligned with the SDM.
Obtained from [81].
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to register the motion between contiguous frames, extract-
ing features through a quad-tree decomposition. Flow images
are extracted from contiguous frame pairs in [130], stacking
and describing them with LBP-TOP.

In the case of local geometric feature extraction, deforma-
tions or motions in localized regions of the face are
described. Because these regions are localized, it is difficult
to geometrically describe their deformations in the RGB
case (being restricted by the precision of the face registration
step). As such, most techniques are dynamic for RGB data.
In the case of 3D data, where much denser geometric infor-
mation is available, the opposite happens.

In the static case, some 3D approaches describe the cur-
vature at specific facial regions, either using primitives [131]
or closed curves [132]. Others describe local deformations
through SIFT descriptors [120] extracted from the depth
map or HOG histograms extracted from DMCM feature
maps [125]. In [133] the basic facial shape components (BFSC)
of the neutral face are estimated from the expressive one,
subtracting the expressive and neutral face depth maps at
rectangular regions around the eyes and mouth.

Most dynamic descriptors in the geometric, local case
have been developed for the RGB modality. These are either
based on landmark displacements, coded with motion units
[134], [135], or the deformation of certain facial components
such as the mouth, eyebrows and eyes, coded with FAP
[136], [137]. One exception is the work in [138] over 3D data,
where an EDM locates a set of landmarks and a motion vec-
tor is extracted from each landmark and pair of frames.

Although geometrical features are effective for describ-
ing FEs, they fail to detect subtler characteristics like wrin-
kles, furrows or skin texture changes. Appearance features
are more stable to noise, allowing for the detection of a
more complete set of FEs, being particularly important for
detecting microexpressions. These feature extraction techni-
ques are applicable to both RGB and thermal modalities,
but not to 3D data, which does not convey appearance
information.

Global appearance features are based on standard fea-
ture descriptors extracted on the whole facial region. For
RGB data, usually these descriptors are applied either over
the whole facial patch or at each cell of a grid. Some exam-
ples include Gabor filters [99], [100], LBP [97], [98], pyramids
of histograms of gradients (PHOG) [93], [94], multi-scale dense
SIFT (MSDF) [94] and local phase quantization (LPQ) [93]. In
[102] a grid is deformed to match the face geometry, after-
wards applying Gabor filters at each vertex. In [101] the facial
region is divided by a grid, applying a bank of Gabor filters
at each cell and radially encoding the mean intensity of
each feature map. An approach called graph-preserving sparse
non-negative matrix factorization (GSNMF) [95] finds the clos-
est match to a set of base images and assigns its associated
primary emotion. This approach is improved in [96], where
projected gradient kernel non-negative matrix factorization
(PGKNMF) is proposed.

In the case of thermal images, the dullness of the image
makes it difficult to exploit the facial geometry. This means
that, in the global case, the whole facial patch is used. The
descriptors exploit the difference of temperature between
regions. One of the first works [103] generated a series of
binary differential images (BDI), extracting the ratio of positive

area divided by the mean ratio over the training samples.
2D discrete cosine transform (2D-DCT) is used in [74], [105] to
decompose the frontalized face into cosine waves, from
which an heuristic approach extracts features.

Dynamic global appearance descriptors are extensions to
3 dimensions of the already explained static global descrip-
tors. For instance, local binary pattern histograms from three
orthogonal planes (LBP-TOP) are used for RGB data [106].
LBP-TOP is an extension of LBP computed over three
orthogonal planes at each bin of a 3D volume formed by
stacking the frames. [94] uses a combination of LBP-TOP
and local phase quantization from three orthogonal planes (LPQ-
TOP), a descriptor similar to LBP-TOP but more robust to
blur. LPQ-TOP is also used in [107], along with local Gabor
binary patterns from three orthogonal planes (LGBP-TOP). In
[108], a combination of HOG, SIFT and CNN are extracted
at each frame. The first two are extracted from an overlap-
ping grid, while the CNN extracts features from the whole
facial patch. These are evaluated independently over time
and embedded into Riemannian manifolds. For thermal
images, [109] uses a combination of temperature difference his-
togram features (TDHFs) and thermal statistic features (StaFs).
TDHFs consist of histograms extracted over the difference
of thermal images. StaFs are a series of 5 basic statistical
measures extracted from the same difference images.

Local appearance features are not used as frequently as
global ones, since it requires previous knowledge to deter-
mine the regions of interest. In spite of that, some works use
them for both RGB and thermal modalities. In the case of
static features, [110] describes the appearance of grayscale
frames by spreading an array of cells across the mouth and
extracting the mean intensity from each. For thermal images,
[75] generates eigenimages from each region of interest and
uses the principal component values as features. In [111]
gray level co-occurrence matrices (GLCMs) are extracted from
the interest regions and second-order statistics computed
on them. GLCM encode texture information by representing
the occurrence frequencies of pairs of pixel intensities at a
given distance. As such, these are also applicable to the
RGB case. In [104] a combination of StaFs, 2D-DCT and
GLCM features is used, extracting both local and global
information.

Few works consider dynamic local appearance features.
The only one to our knowledge [112] describes thermal
sequences by processing them with SIFT flow and chunking
them into clips. Contiguous clip frames are wrapped and
subtracted, spatially dividing the clip with a grid. The result-
ing cuboids with higher inter-frame variability for either
radiance or flow are selected, extracting a Bag of Words histo-
gram (BoWHist.) from each.

Based on the observation that some AU are better det-
ected using geometrical features and others using appear-
ance ones, it was suggested that a combination of both
might increase recognition performance [127], [139], [183].
Feature extraction methods combining geometry and
appearance are more common for RGB, but it is also possi-
ble to combine RGB and 3D. Because 3D data is highly dis-
criminative and robust to problems such as shadows and
illumination changes, the benefits of combining it with RGB
data are small. Nevertheless, some works have done so
[141], [142], [143]. It should also be possible to extract

CORNEANU ETAL.: SURVEYON RGB, 3D, THERMAL, AND MULTIMODAL APPROACHES FOR FACIAL EXPRESSION RECOGNITION: HISTORY,... 1553



features combining 3D and thermal information, but to the
best of our knowledge it has not been attempted.

In the static case, [139] uses a combination of Multi-state
models and edge detection to detect 18 different AUs on the
upper and lower parts of the face in grayscale images. [140]
uses both global geometry features and local appearance
features, combining landmark distances and angles with
HOG histograms centered at the barycenter of triangles
specified by three landmarks. Other approaches use defor-
mable models such as 3DMM [141] to combine 3D and
intensity information. In [142], [143] SFAM describes the
deformation of a set of distance-based, patch-based and
grayscale appearance features encoded using LBP.

When analysing dynamic information, [140] uses RGB
data to combine the landmark displacements between two
frames with the change in intensity of pixels located at the
barycenter defined by three landmarks.

Learned features are usually trained through a joint fea-
ture learning and classification pipeline. As such, these
methods are explained in Section 3.2.4 along with learning.
The resulting features usually cannot be classified as local
or global. For instance, in the case of CNNs, multiple convo-
lution and pooling layers may lead to higher-level features
comprising the whole face, or to a pool of local features.
This may happen implicitly, due to the complexity of the
problem, or by design, due to the topology of the network.
In other cases, this locality may be hand-crafted by restrict-
ing the input data. For instance, the method in [152], selects
interest regions and describes each one with a deep belief net-
work (DBN). Each DBN is jointly trained with a weak classi-
fier in a boosted approach.

3.2.4 FE Classification and Regression

FE recognition techniques are grouped into categorical and
continuous depending on the target expressions [184]. In
the categorical case there is a predefined set of expressions.
Commonly for each one a classifier is trained, although
other ensemble strategies could be applied. Some works
detect the six primary expressions [99], [115], [116], while
others detect expressions of pain, drowsiness and emotional
attachment [48], [185], [186], or indices of psychiatric disor-
der [187], [188].

In the continuous case, FEs are represented as points in a
continuous multidimensional space [9]. The advantages of
this second approach are the ability to represent subtly dif-
ferent expressions, mixtures of primary expressions, and
the ability to unsupervisedly define the expressions through
clustering. Many continuous models are based on the
activation-evaluation space. In [157], a recurrent neural net-
work (RNN) is trained to predict the real-valued position of
an expression inside that space. In [158] the feature space is
scaled according to the correlation between features and tar-
get dimensions, clustering the data and performing Kernel
regression. In other cases like [156], which uses a RNN for
classification, each quadrant is considered as a class, along
with a fifth neutral target.

Expression recognition methods can also be grouped into
static and dynamic. Static models evaluate each frame inde-
pendently, using classification techniques such as Bayesian
network classifiers (BNC) [115], [134], [135], neural networks
(NN) [103], [139], SVM [75], [99], [116], [120], [125], SVM

committees [111] and random forests [140]. In [101] k-nearest
neighbors (kNN) is used to separately classify local patches,
performing a dimensionality reduction of the outputs thr-
ough PCA and LDA and classifying the resulting feature
vector.

More recently, deep learning architectures have been
used to jointly perform feature extraction and recognition.
These approaches often use pre-training [189], an unsuper-
vised layer-wise training step that allows for much larger,
unlabeled datasets to be used. CNNs are used in [144], [145],
[146], [147], [148]. [149] proposes AU-aware deep networks
(AUDN), where a common convolutional plus pooling step
extracts an over-complete representation of expression fea-
tures, from which receptive fields map the relevant features
for each expression. Each receptive field is fed to a DBN to
obtain a non-linear feature representation, using an SVM to
detect each expression independently. In [152] a two-step
iterative process is used to train boosted deep belief networks
(BDBN) where eacn DBN learns a non-linear feature from a
face patch, jointly performing feature learning, selection and
classifier training. [151] uses a deep Boltzmann machine (DBM)
to detect FEs from thermal images. Regarding 3D data, [150]
transforms the facial depth map into a gradient orientation
map and performs classification using a CNN.

Dynamic models take into account features extracted
independently from each frame to model the evolution of
the expression over time. Dynamic Bayesian Networks such
as hidden Markov models (HMM) [127], [128], [129], [134],
[136], [137], [153] and variable-state latent conditional random
fields (VSL-CRF) [113] are used. Other techniques use
RNN architectures such as long short term memory (LSTM)
networks [126]. In other cases [154], [155], hand-crafted
rules are used to evaluate the current frame expression
against a reference frame. In [140] the transition probabili-
ties between FEs given two frames are first evaluated with
RF. The average of the transition probabilities from previ-
ous frames to the current one, and the probability for each
expression given the individual frame are averaged to pre-
dict the final expression. Other approaches classify each
frame independently (eg. with SVM classifiers [110]), using
the prediction averages to determine the final FE.

In [115], [130] an intermediate approach is proposed
where motion features between contiguous frames are
extracted from interest regions, afterwards using static clas-
sification techniques. [108] encodes statistical information of
frame-level features into Riemannian manifolds, and evalu-
ates three approaches to classify the FEs: SVM, logistic
regression (LR) and partial least squares (PLS).

More redently, dynamic, continuous models have also
been considered. Deep bidirectional long short-term memory
recurrent neural networks (DBLSTM-RNN) are used in [107].
While [159] uses static methods to make the initial affect
predictions at each time step, it uses particle filters to make
the final prediction. This both reduces noise and performs
modality fusion.

3.2.5 Multimodal Fusion Techniques

Many works have considered multimodality for recognizing
emotions, either by considering different visual modalities
describing the face or, more commonly, by using other sour-
ces of information (e.g. audio or physiological data). Fusing
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multiple modalities has the advantage of increased robust-
ness and conveying complementary information. Depth
information is robust to changes in illumination, while ther-
mal images convey information related to changes in the
blood flow produced by emotions. It has been found that
momentary stress increases the periorbital blood flow, while
if sustained the blood flow to the forehead increases [197].
Joy decreases the blood flow to the nose, while arousal
increases it to the nose, periorbital, lips and forehead [198].

The fusion approaches followed by these works can be
grouped into three main categories: early, late and sequential
fusion (see Fig. 6). Early fusion merges the modalities at the
feature level, while late fusion does so after applying expres-
sion recognition, at the decision level [199]. Early fusion
directly exploits correlations between features from different
modalities, and is specially useful when sources are synchro-
nous in time. However, it forces the classifier/regressor to
work with a higher-dimensional feature space, increasing
the likelihood of over-fitting. On the other hand, late fusion
is usually considered for asynchronous data sources, and
can be trained on modality-specific datasets, increasing the
amount of available data. A sequential use of modalities is
also considered by somemultimodal approaches [170].

It is also possible to directly merge the input data from
different modalities, an approach referred in this document
as direct data fusion. This approach has the advantage of
allowing the extraction of features from a richer data source,
but is limited to input data correlated for both spatial and, if
considered, temporal domains.

Regarding early fusion, the simplest approach is plain early
fusion, which consists on concatenating the feature vectors
from both modalities. This is done in [126], [160] to fuse RGB
video and speech. Usually, a feature selection approach is
applied. One such technique is sequential backward selection
(SBS), where the least significant feature is iteratively
removed until some criterion is met. In [162] SBS is used to
merge RGB video and speech. A more complex approach is
to use the best-first search algorithm, as done in [161] to fuse
RGB facial and body gesture information. Other approaches
include using 10-fold cross-validation to evaluate different
subsets of features [165] and an analysis of variance (ANOVA)
[166] to independently evaluate the discriminative power of
each feature. These two works both fuse RGB video, gesture
and speech information.

An alternative to feature selection is to encode the depen-
dencies between features. This can be done by using probabi-
listic inference models for recognition. A Bayesian network is
used in [163] to infer the emotional state from both RGB video
and speech. In [164] a multi-stream fused HMM (MFHMM)
models synchronous information on both modalities, taking
into account the temporal component. The advantage of

probabilistic inference models is that the relations between
features are restricted, reducing the degrees of freedom of the
model. On the other hand, it also means that it s necessary to
manually design these relations. Other inference techniques
are also used, such as fuzzy inference systems (FIS), to represent
emotions in a continuous 4-dimensional output space based
on grayscale video, audio and contextual information [169].

Late fusion merges the results of multiple classifiers/
regressors into a final prediction. The goal is either to obtain
a final class prediction, a continuous output specifying the
intensity/confidence for each expression or a continuous
value for each dimension in the case of continuous repre-
sentations. Here the most common late fusion strategies
used for emotion recognition are discussed, but since it can
be seen as an ensemble learning approach, many other
machine learning techniques could be used. The simplest
approach is theMaximum rule 3, which selects the maximum
of all posterior probabilities. This is done in [162] to fuse
RGB video and speech. This technique is sensible to high-
confidence errors. A classifier incorrectly predicting a class
with high confidence would be frequently selected as win-
ner even if all other classifiers disagree. This can be partially
offset by using a combination of responses, as is the case of
the Sum rule and Product rule. The Sum rule sums the confi-
dences for a given class from each classifier, giving the class
with the highest confidence as result [108], [161], [162]. The
Product rule works similarly, but multiplying the confiden-
ces [161], [162]. While these approaches partially offset the
single-classifier weakness problem, the strengths of each
individual modality are not considered. The Weight criterion
solves this by assigning a confidence to each classifier out-
put, otputting a weighted linear combination of the predic-
tions [161], [162], [167], [200]. A rule-based approach is also
possible, where a dominant modality is selected for each
target class [168].

Bayesian Inference is used to fuse predictions of RGB,
speech and lexical classifiers, simultaneously modeling time
[98]. The bayesian framework uses information from previ-
ous frames along with the predictions from each modality to
estimate the emotion displayed at the current frame.

Sequential fusion is a technique that applies the different
modality predictions in sequential order. It uses the results
of one modality to disambiguate those of another when
needed. Few works use this technique, being an example
[170], a rule-based approach that combines grayscale facial
and speech information. The method uses acoustic data to
distinguish candidate emotions, disambiguating the results
with grayscale information.

3.3 FE Datasets

We group datasets’ properties in three main categories,
focusing on content, capture modality and participants. In
the content category we refer to the type of content and
labels the datasets provide. We signal intentionality of the
FEs (posed or spontaneous), the labels (primary expres-
sions, AUs or others where is the case) and if datasets con-
tain still images or video sequences (static/dynamic). In the
capture category we group datasets by the context in which
data was captured (lab or non-lab) and diversity in

Fig. 6. General execution pipeline for the different modality fusion
approaches. The tensor product symbols represent the modality fusion
strategy. Approach-specific components of the pipeline are represented
with different line types: dotted corresponds to early fusion, dashed to
late fusion, dashed-dotted to direct data fusion and gray to sequential
fusion.

3. Also known as the winner takes it all rule
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perspective, illumination and occlusions. The last section
compiles statistical data about participants, including age,
gender and ethnic diversity. In Fig. 7 we show samples
from some of the most well-known datasets. In Tables 1
and 2 the reader can refer to a complete list of RGB, 3D and
Thermal datasets and their characteristics.

RGB. One of the first important datasets made public was
the Cohn-Kanade (CK) [190], later extended into what was
called the CK+ [191]. The first version is relatively small,
consisting of posed primary FEs. It has limited gender, age
and ethnic diversity and contains only frontal views with
homogeneous illumination. In CK+, the number of posed
samples was increased by 22 percent and spontaneous
expressions were added. The MMI dataset was a major
improvement [114]. It adds profile views of not only the pri-
mary expressions but most of the AU of the FACS system. It
also introduced temporal labeling of onset, apex and offset.
Multi-PIE [193] increases the variability by including a very
large number of views at different angles and diverse illu-
mination conditions. GEMEP-FERA is a subset of the emo-
tion portrayal dataset GEMEP, specially annotated using
FACS. CASME [201] is an example of a dataset containing
microexpressions. A limitation of most RGB datasets is the
lack of intensity labels. It is not the case of the DISFA dataset

[202]. Participants were recorded while watching a video
specially chosen for inducing emotional states and 12 AUs
were coded for each video frame on a 0 (not present) to 5
(maximum intensity) scale [202].

While previous RGB datasets record FEs in controlled
lab environments, Acted Facial Expressions In The Wild Data-
base (AFEW) [203], Affectiva-MIT Facial Expression Dataset
(AMFED) [204] and SEMAINE [205] contain faces in natu-
ralistic environments. AFEW has 957 videos extracted from
movies, labeled with six primary expressions and addi-
tional information about pose, age, and gender of multiple
persons in a frame. AMFED contains spontaneous FEs rec-
orded in natural settings over the Internet. Metadata con-
sists of frame by frame AU labelling and self reporting of
affective states. SEMAINE contains primitive FEs, FACS
annotations, labels of cognitive states, laughs, nods and
shakes during interactions with artificial agents.

3D. The most well known 3D datasets are BU-3DFE [206],
Bosphorus [195] (still images), BU-4DFE [207] (video) and
BP4D [38] (video). In BU-3DFE, six expressions from 100
different subjects are captured on four different intensity
levels. Bosphorus has low ethnic diversity but it contains a
much larger number of expressions, different head poses
and deliberate occlusions. BU-4DFE is a high-resolution

Fig. 7. FE datasets. (a) The CK [190] dataset (top) contains posed exaggerated expressions. The CK+ [191] (bottom) extends CK by introducing
spontaneous expressions. (b) MMI [192], the first dataset to contain profile views. (c) MultiPIE [193] has multiview samples under varying illumination
conditions. (d) SFEW [194], an in the wild dataset. (e) Primary FEs in Bosphorus [195], a 3D dataset. (f) KTFE [196] dataset, thermal images of
primary spontaneous FEs.

TABLE 1
A Non-Comprehensive List of RGB FE Datasets

RGB

CK+ MPIE JAFFE MMI RU_FACS SEMAINE CASME DISFA AFEW SFEW AMFED

Content
Intention(Posed/Spontaneous) P P P P S S S S S S S

Label(Primary/AU/DA) P=AU P P AU þ T P=AU P=AU=DA1 P=AU AU þ I P=2 P P=AU=Smile

Temporality(Static/Dynamic) D S S D D D D D D S D

Capture

Environment(Lab/Non-lab) L L L L L L L L N N N

Multiple Perspective � � � � � � � � � � �
Multiple Illumination � � � � � � � � � � �
Occlusions � � � � � � � � � � �

Subjects
# of subjects 201 337 10 75 100 150 35 27 220 68 5268

Ethnic Diverse � � � � � � � � � � �
Gender(Male/Female(%)) 31/69 70/30 100/0 50/50 - 62/38 37/63 44/56 - - 58/42

Age 18-50 m ¼ 27:9 - 19-62 18-30 22-60 m ¼ 22 18-50 1-70 - -

= Yes, � = No, - = Not enough information. DA: Dimensional Affect, I = Intensity labelling, T = Temporal segments. 1 Other labels include Laughs, Nods,
Epistemic states(e.g. Certain, Agreeing, Interested etc.) etc. Refer to original paper for details [205]. 2 Pose, Age, Gender. Refer to original paper for details [203].
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3D dynamic FE dataset [207]. Video sequences, having 100
frames each, are captured from 101 subjects. It only contains
primary expressions. BU-3DFE, BU-4DFE and Bosphorus
all contain posed expressions. BP4D tries to address this
issue with authentic emotion induction tasks [38]. Games,
film clips and a cold pressor test for pain elicitation were
used to obtain spontaneous FEs. Experienced FACS coders
annotated the videos, which were double-checked by the
subject’s self-report, FACS analysis and human observer
ratings [38].

Thermal. There are few thermal FE datasets, and all of
them also include RGB data. The first ones, IRIS [208] and
NIST/Equinox [209], consist of image pairs labeled with
three posed primary emotions under various illuminations
and head poses. Recently the number of labeled FEs has
increased, also including image sequences. The Natural Visi-
ble and Infrared facial Expression database (NVIE) contains 215
subjects, each displaying six expressions, both spontaneous
and posed [210]. The spontaneous expressions are triggered
through audiovisual media, but not all of them are present
for each subject. In the Kotani Thermal Facial Emotion (KTFE)
dataset subjects display posed and spontaneous motions,
also triggered through audiovisual media [196].

4 HISTORICAL EVOLUTION AND CURRENT TRENDS

4.1 Historical Evolution

The first work on AFER was published in 1978 [211]. It was
tracking the motion of landmarks in an image sequence.
Mostly because of poor face detection and face registration
algorithms and limited computational power, the subject
received little attention throughout the next decade. The
work of Mase and Pentland and Paul Ekman marked a
revival of this research topic at the beginning of the nineties
[212], [213]. The interested reader can refer to some influen-
tial surveys of these early works [214], [215], [216].

In 2000, the CK dataset was published marking the begin-
ning of modern AFER [139]. While a large number of
approaches aimed at detecting primary FEs or a limited set
of FACS AUs [99], [116], [134], [137], others focused on a
larger set of AUs [114], [127], [139]. Most of these early works
used geometric representations, like vectors for describing
the motion of the face [134], active contours for describing

the shape of the mouth and eyebrows [137], or deformable
2D mesh models [116]. Others focused on appearance repre-
sentations like Gabor filters [99], optical flow and LBPs [97]
or combinations between the two [139]. The publication of
the BU-3DFE dataset [206] was a starting point for consis-
tently extending RGB FE recognition to 3D. While some of
the methods require manual labelling of fiducial vertices
during training and testing [118], [131], [217], others are fully
automatic [121], [124], [125], [133]. Most use geometric repre-
sentations of the 3D faces, like principal directions of surface
curvatures to obtain robustness to head rotations [131], and
normalized Euclidean distances between fiducial points in
the 3D space [118]. Some encode global deformations of
facial surface (depth differences between a basic facial shape
component and an expressional shape component) [133] or
local shape representations [122]. Most of them target pri-
mary expressions [131] but studies about AUs were pub-
lished as well [122], [218].

In the first part of the decade static representations were
the primary choice in both RGB [99], [139], 3D [118], [120],
[125], [131], [133], [219] and thermal [111]. In later years vari-
ous ways of dynamic representation were also explored like
tracking geometrical deformations across frames in RGB
[114], [116] and 3D [119], [128] or directly extracting features
fromRGB [127] and thermal frame sequences [196], [210].

Besides extendedwork on improving recognition of posed
FEs and AUs, studies on expressions in ever more complex
contexts were published. Works on spontaneous facial
expression detection [115], [220], [221], [222], analysis of com-
plex mental states [223], detection of fatigue [224], frustration
[44], pain [185], [186], [225], severity of depression [53] and
psychological distress [226], and including AFER capabilities
in intelligent virtual agents [227] opened new territory in
AFER research.

In summary, research in automatic AFER started at the
end of the 1970’s, but for more than a decade progress was
slow mainly because of limitations of face detection and
face registration algorithms and lack of sufficient computa-
tional power. From RGB static representations of posed FEs,
approaches advanced towards dynamic representations
and spontaneous expressions. In order to deal with chal-
lenges raised by large pose variations, diversity in illumina-
tion conditions and detection of subtle facial behaviour,

TABLE 2
A Non-Comprehensive List of 3D and Thermal FE Datasets

3D RGB+Thermal

BU-3DFE BU-4DFE Bosphorus BP4D IRIS NIST NVIE KTFE

Content
Intention(Posed/Spontaneous) P P P S P P S=P S=P
Label(Primary/AU) P þ I P P=AU AU P P P P
Temporality(Static/Dynamic) S D S D S S D D

Capture

Environment(Lab/Non-lab) L L L L L L L L
Multiple Perspective � � - � � � � �
Multiple Illumination � � � � � � � �
Occlusions � � � � � � � �

Subjects

# of subjects 100 101 105 41 30 90 215 26
Ethnic Diverse � � � � � - � �
Gender(Male/Female(%)) 56/44 57/43 43/57 56/44 - - 27/73 38/62
Age 18-70 18-45 25-35 18-29 - - 17-31 12-32

= Yes, � = No, - = Not enough information, I = Intensity labelling.
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alternative modalities like 3D and Thermal have been pro-
posed. While most of the research focused on primary FEs
and AUs, analysis of pain, fatigue, frustration or cognitive
states paved the way to new applications in AFER.

In Fig. 8 we present a timeline of the historical evolution
of AFER. In the next sections we will focus on current imp-
ortant trends.

4.2 Estimating Intensity of Facial Expressions

While detecting FACS AUs facilitates a comprehensive
analysis of the face and not only of a small subset of so
called primary FEs of affect, being able to estimate the inten-
sity of these expressions would have even greater informa-
tional value especially for the analysis of more complex
facial behaviour. For example, differences in intensity and
its timing can distinguish between posed and spontaneous
smiles [228] and between smiles perceived as polite versus
those perceived as embarrassed [229]. Moreover, intensity
levels of a subset of AUs are important in determining the
level of detected pain [230], [231].

In recent years estimating intensity of facial expressions
and especially of AUs has become an important trend in the
community. As a consequence the Facial Expression and
Recognition (FERA) challenge added a special section for
intensity estimation [232], [233]. This was recently facilitated
by the publication of FE datasets that include intensity
labels of spontaneous expression in RGB [202] and 3D [38].

Even though attempts in estimating FE intensity have
existed before [234], the first seminal work was published in
2006 [235]. It observed a correlation between a classifier’s
output margin, in this case the distance to the hyperplane of
a SVM classification, and the intensity of the facial expres-
sion. Unfortunately this was only weakly observered for
spontaneous FEs.

A number of studies question the validity of estimating
intensity from distance to the classification hyperplane [236],
[237], [238]. In two works published in 2011 and 2012 Savran
et al. made an excellent study of these techniques providing
solutions to their main weak points [236], [237]. They com-
ment that such approaches are designed for AU not intensity
detection and the classifier margin does not necessarily incor-
porate only intensity information. More recently, [238] found
that intensity-trained multiclass and regression models out-
performed binary-trained classifier decision values on smile
intensity estimation across multiple databases and methods
for feature extraction and dimensionality reduction.

Other works consider the possible advantage of using 3D
information for intensity detection. [236] explores a compar-
ison between regression on SVM margins and regression on
image features in RGB, 3D and their fusion. Gabor wavelets

are extracted from RGB and curvatured maps from 3D cap-
tures. A feature selection step is performed from each of the
modalities and from their fusion. The main assumption
would be that for different AUs, either RGB or 3D represen-
tations could be more discriminative. Experiments show
that 3D is not necessarily better than RGB; in fact, while 3D
shows improvements on some AUs, it has performance
drops on other AUs, both in the detection and intensity esti-
mation problems. However, when 3D is fused with RGB,
the overall performance increases significantly. In [237],
Savran et al. try different 3D surface representations. When
evaluated comparatively, RGB representation performs bet-
ter on the upper face while 3D representation performs bet-
ter on the lower face and there is an overall improvement if
RGB and 3D intensity estimations are fused. This might be
the case because 3D sensing noise can be excessive in the
eye region and 3D misses the eye texture information. On
the other hand, larger deformations on the lower face make
3D more advantageous. Nevertheless, correlations on upper
face are significantly higher than the lower face for both
modalities. This points out to the difficulties in intensity
estimation for the lower face AUs (see Fig. 4).

A different line of research analyzes the way geometrical
and appearance representations could combine for optimiz-
ing AU intensity estimation [49], [239]. [239] analyzes repre-
sentations best suited for specific AUs. An assumption is
made that geometrical representations perform better for
AUs related to deformations (lips, eyes) and appearance
features for other AUs (e.g. cheeks deformations). Testing of
various descriptors is done on a small subset of specially
chosen AUs but without a clear conclusion. On the other
hand [49] combines shape with global and local appearance
features for continuous AU intensity estimation and contin-
uous pain intensity estimation. A first conclusion is that
appearance features achieve better results than shape fea-
tures. Even more, the fusion between the two appearance
representations, DCT and LBP, gives the best performance
even though a proper alignment might improve the contri-
bution of the shape representation as well. On the other
hand this approach is static, which would fail to distinguish
between eye blink and eye closure, and does not exploit the
correlations between apparitions of different AUs. In order
to overcome such limitations some works use probabilistic
models of AUs combination likelihoods and intensity priors
for improving performance [240], [241].

In summary, estimating facial AUs intensity followed a
few distinct approaches. First, some researchers made a crit-
ical analysis about the limitations of estimating intensity
from classification scores [236], [237], [238]. As an alterna-
tive, direct estimation from features was analyzed. Further

Fig. 8. Historical evolution of AFER.
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studies on optimal representations for intensity estimation
of different AUs were published either from the points of
view of geometrical vs appearance representations [49],
[239] or the fusion between RGB and 3D [236], [237]. Finally,
a third main research direction was focused on modelling
the correlations between AUs appearance and intensity pri-
ors [240], [241]. Some works are treating a limited subset of
AUs while others are more extensive. All the presented
approaches use predesigned representations. While the vast
majority of the works are performing a global feature extrac-
tion with or without selecting features there are cases of
sparse representations [242]. In this paper we have analyzed
AU intensity estimation but significant works in estimating
intensity of pain [49], [231] or smile [243], [244] also exist.

4.3 Microexpressions Analysis

Microexpressions are brief FEs that people in high stake sit-
uations make when trying to conceal their feelings. They
were first reported by Haggard and Issacs in 1966 [245].
Usually a microexpression lasts between 1/25 and 1/3 of a
second and has low intensity. They are difficult to recognize
for an untrained person. Even after extensive training,
human accuracies remain low, making an automatic system
highly useful. The presumed repressed character of micro-
expressions is valuable in detecting affective states that a
person may be trying to hide.

Microexpressions differ from other expressions not only
because of their short duration but also because of their sub-
tleness and localization. These issues have been addressed
by employing specific capturing and representation techni-
ques. Because of their short duration microexpressions may
be better captured at greater than 30 fps. As with spontane-
ous FEs, which are shorter and less intense than exaggerated
posed expressions, methods for recognizing microexpres-
sions take into account the dynamics of the expression. For
this reason, a main trend in microexpression analysis is to
use appearance representations captured locally in a dyn-
amic way [246], [247], [248]. In [249] for example, the face is
divided into specific regions and posed microexpressions in
each region are recognized based on 3D-gradient orientation
histograms extracted from sequences of frames. [246] on the
other hand use optical flow to detect strain produced on the
facial surface caused by nonrigid motion. After macroex-
pressions have been previously detected and removed from
the detection pipeline, posed microexpressions are spotted
without doing classification [246], [247]. [250], another
method that first extracts macroexpressions before spotting
microexpressions. Unlike other similar methodsmicroexper-
essions are also classified into the 6 primary FEs.

A problem in the evolution of microexpression analysis
has been the lack of spontaneous expression datasets. Before
the publication of the CASME and the SMIC dataset in 2013,
methods were usually trained with posed non-public data
[246], [247], [249]. [248] proposes the first microexpressions
recognition system. LBP-TOP, an appearance descriptor is
locally extracted from video cubes. Microexpressions detec-
tion and classification with high recognition rates are repo-
rted even at 25 fps. Alternatively, existing datasets, such as
BP4D, could be mined for microexpression analysis. One
could identify the initial frames of discrete AUs, to mimic
the duration and dynamic of microexpressions.

In summary, microexpressions are brief, low intensity
FEs believed to reflect repressed feelings. Even highly
trained human experts obtain low detection rates. An auto-
matic microexpression recognition system would be highly
valuable for spotting feelings humans are trying to hide.
Due to their briefness, subtleness and localization most of
methods in recent years have used local, dynamic, appear-
ance representations extracted from high frequency video
for detecting and classifying posed [246], [247], [249] and
more recently spontaneous microexpressions [248].

4.4 AFER for Detecting Non-Primary Affective
States

Most of AFER was used for predicting primary affective
states of basic emotions, such as anger or happiness but FEs
were also used for predicting non-primary affective states
such as complex mental states [223], fatigue [224], frustra-
tion [44], pain [185], [186], [225], depression [53], [251],
mood and personality traits [252], [253].

Approaches related to mood prediction from facial cues
have pursued both descriptive (e.g., FACS) and judgmental
approaches to affect. In a paper from 2009, Cohn et al. studied
the difference between directly predicting depression from
video by using a global geometrical representation (AAM),
indirectly predicting depression from video by analyzing pre-
viously detected facial AUs and prediction depression from
audio cues [187]. They concluded that specific AUs have
higher predictive power for depression than others suggest-
ing the advantage of using indirect representations for depr-
ession prediction. The AVEC, a challenge, is dedicated to
dimensional prediction of affect (valance, arousal, dominance)
and depression level prediction. The approaches dedicated to
depression prediction are mainly using direct representations
from video without detecting primitive FEs or AUs [254],
[255], [256], [257]. They are based on local, dynamic represen-
tations of appearance (LBP-TOP or variants) for modelling
continuous classification problems. Multimodality is central
in such approaches either by applying early fusion [256] or
late fusion [257] with audio representations.

As humans rely heavily on facial cues to make judgments
about others, it was assumed that personality could be
inferred from FEs as well. Usually studies about personality
are based on the BigFive personality trait model which is
organized along five factors: openness, conscientiousness,
extraversion, agreeableness, and neuroticism. While there
are works on detecting personality and mood from FEs only
[252], [253] the dominant approach is to use multimodality
either by combining acoustic with visual cues [252], [258] or
physiological with visual cues [259]. Visual cues can refer to
eye gaze [260], [261], frowning, head orientation, mouth
fidgeting [260], primary FEs [252], [253] or characteristics of
primary FEs like presence, frequency or duration [252]. In
[252], Biel et al. use the detection of six primary FEs and of
smile to build various measures of expression duration or
frequency. They show that using FEs is achieving better
results than more basic visual activity measures like gaze
activity and overall motion of the head and body; however
performance is considerably worse than when estimating
personality from audio and especially from prosodic cues.

In summary, in recent years, the analysis of non-primary
affective states mainly focused on predicting depression.
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For predicting levels of depression, local, dynamic represen-
tations of appearance were usually combined with acoustic
representations [254], [255], [256], [257]. Studies of FEs for
predicting personality traits had mixed conclusions until
now. First, FEs were proven to correlate better than visual
activity with personality traits [187]. Practically though,
while many studies have showed improvements of predic-
tion when combined with physiological or acoustic cues,
FEs remain marginal in the study of personality trait predic-
tion [252], [258], [260], [261].

4.5 AFER in Naturalistic Environments

Until recently AFER was mostly performed in controlled
environments. The publication of two important naturalistic
datasets, AMFED and AFEW marked an increasing interest
in naturalistic environment analysis. AFEW, Acted Facial
Expressions in the Wild dataset contains a collection of
sequences from movies labelled for primitive FEs, pose, age
and gender among others [203]. Additional data about con-
text is extracted from subtitles for persons with hearing
impairment. AMFED on the other hand, contains videos
recording reactions to media content over the Internet. It
mostly focuses on boosting research about how attitude to
online media consumption can be predicted from facial
reactions. Labels of AUs, primitive FEs, smiles, head move-
ments and self reports about familiarity, liking and disposal
to rewatch the content are provided.

FEs in naturalistic environments are unposed and typi-
cally of low to moderate intensity and may have multiple
apexes (peaks in intensity). Large head pose and illumina-
tion diversity are common. Face detection and alignment is
highly challenging in this context, but vital for eliminating
rigid motion and head pose from facial expressions. Not
surprisingly, in an analysis of errors in AU detection in
three-person social interactions, [262] found that head yaw
greater than 20 degrees was a prime source of error. Pixel
intensity and skin color, by contrast, were relatively benign.

While approaches to FE detection in naturalistic environ-
ments using static representations exist [194], [263],
dynamic representations are dominant [108], [113], [146],
[147], [264], [265]. This follows the tendency in spontaneous
FE recognition in controlled environments where dynamic
representations improve the ability to distinguish between
subtle expressions. In [146], spatio-temporal manifolds of
low level features are modelled, [264] uses a maximum of a
bag of words (BoW) pyramid over the whole sequence,
[147] captures spatio-temporal information through autoen-
coders and [113] uses CRFs to model expression dynamics.

Some of the approaches use predesigned representations
[194], [263], [264], [265], [266] while recent successful
approaches learn the best representation [146], [147], [152]
or combine predesigned and learned features [108]. Because
of the need to detect subtle changes in the facial configura-
tion, predesigned representations use appearance features
extracted either globally or locally. Gehrig et al. in their
analysis of the challenges of naturalistic environments use
DCT, LBP and Gabor Filters [263], Sikka et al. use dense
multi-scale SIFT BoWs, LPQ-TOP, HOG, PHOG and GIST
to get additional information about context [264], Dhall
et al. use LBP, HOG and PHOG in their baseline for the
SFEW dataset (static images extracted from AFEW) [194]

and LBP-TOP in their baseline for the EmotiW 2014 chal-
lenge [266], and Liu et al. use convolution filters for produc-
ing mid-level features [146].

Some representative approaches using learned represen-
tation were recently proposed [108], [146], [147], [152]. In
[152], a BDBN framework for learning and selecting features
is proposed. It is best suited for characterizing expression-
related facial changes. [147] proposes a configuration
obtained by late fusing spatio-temporal activity recognition
with audio cues, a dictionary of features extracted from the
mouth region and a deep neural network for FEs recogni-
tion. In [108], predesigned (HOG, SIFT) and learned (deep
CNN features) representations are combined and different
image set models are used to represent the video sequences
on a Riemannian manifold. In the end, late fusion of classi-
fiers based on different kernel methods (SVM, logistic
regression, partial least squares) and different modalities
(audio and video) is conducted for final recognition results.
Finally, [113] encodes dynamics with a variable-state latent
conditional random fields (VSL-CRF) model that automatically
selects the optimal latent states and their intensity for each
sequence and target class.

Most approaches presented target primitive FEs. Meth-
ods for recognizing other affective states have also been pro-
posed, namely cognitive states like boredom, confusion,
delight, concentration and frustration [267], positive and
negative affect from groups of people [268] or liking/not-
linking of online media for predicting buying behaviour for
marketing purposes [269].

In summary, large head pose rotations and illumination
changes make FE recognition in naturalistic environments
particularly challenging. FEs are by definition spontaneous,
usually have low intensity, can have multiple apexes and
can be difficult to distinguish from facial displays of speech.
Even more, multiple persons can express FEs simulta-
neously. Because of the subtleness of facial configurations
most predesigned representations are dynamically extract-
ing the appearance [263], [264], [265], [266]. Recently suc-
cessful methods learn representations [108], [146], [147],
[152] from sequences of frames. Most approaches target
primitive FEs of affect, but others recognize cognitive states
[267], postive and negative affect from groups of people
[268] and liking/not-linking of online media for predicting
buying behaviour for marketing purposes [269].

5 DISCUSSION

By looking at faces humans extract information about each
other, such as age, gender, race, and how others feel and
think. Building automatic AFER systems would have tre-
mendous benefits. Despite significant advances, automatic
AFER still faces many challenges like large head pose varia-
tions, changing illumination contexts and the distinction
between facial display of affect and facial display caused by
speech. Finally, even when one manages to build systems
that can robustly recognize FEs in naturalistic environ-
ments, it still remains difficult to interpret their meaning.
In this paper we have focused in providing a general intro-
duction into the broad field of AFER. We have started by
discussing how affect can be inferred from FEs and its
applications. An in-depth discussion about each step in a
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AFER pipeline followed, including a comprehensive taxon-
omy and many examples of techniques used on data cap-
tured with different video sensors (RGB, 3D, Thermal).
Then, we have presented important recent evolutions in the
estimation of FE intensities, recognition of microexpressions
and non-primary affective states and analysis of FEs in nat-
uralistic environments.

5.1 Face Localization and Registration

When extracting FE information, techniques vary according
to both modality and temporality. Regardless of these
approaches, a common pipeline has been presented which
is followed by most methods, consisting of face detection,
face registration, feature extraction and recognition itself.
When combining multiple modalities, a fifth fusion step is
added to the pipeline. Depending on the modality, this
pipeline can vary slightly. For instance, face registration is
not feasible for thermal imaging due to the dullness of the
captured images, which in turn limits feature extraction to
appearance-based techniques. The techniques applied to
obtain the facial landmarks are different for RGB and 3D,
being these feature detection and shape registration prob-
lems respectively. The pipeline may also vary for some
methods, which may not require face alignment for some
global feature-extraction techniques, and may perform fea-
ture extraction implicitly with recognition, as is the case of
deep learning approaches.

The first two steps of the pipeline, face localization and
2D/3D registration, are common to many facial analysis
techniques, such as face and gender recognition, age estima-
tion and head pose recovery. This work introduces them
briefly, referring the reader to more specific surveys for each
topic [176], [180], [181]. For face localization, two main fami-
lies of methods have been found: face detection and face seg-
mentation. Face detection is the most common approach,
and is usually treated as a classification problem where a
bounding box can either be a face or not. Segmentation tech-
niques label the image at the pixel level. For face registration,
2D (RGB/thermal) and 3D approaches have been discussed.
2D approaches solve a feature detection problemwheremul-
tiple facial features are to be located inside a facial region.
This problem is approached either by directly fitting the
geometry to the image, or by using deformablemodels defin-
ing a prototypical model of the face and its possible deforma-
tions. 3D approaches, on the other hand, consider a shape
registration problemwhere a transform is to be foundmatch-
ing the captured shape to a model. Currently the main chal-
lenge is to improve registration algorithms to robustly deal
with naturalistic environments. This is vital for dealing with
large rotations, occlusions, multiple persons and, in the case
of 3D registration, it could also be used for synthesising new
faces for training neural networks.

5.2 Feature Extraction

There are many different aproaches for extracting features.
Predesigned descriptors are very common, although recently
deep learning techniques such as CNN and DBN have been
used, implicitly learning the relevant features along with the
recognition model. While automatically learned techniques
cannot be directly classified according to the nature of the
described information, predesigned descriptors exploit either

the facial appearance, geometry or a combination of both.
Regardless of their nature,manymethods exploit information
either at a local level, centering on interest regions sometimes
definedbyAUs based on the FACS/FAP coding, or at a global
level, using the whole facial region. These methods can
describe either a single frame, or dynamic information. Usu-
ally, representing the differences between consecutive frames
is done either through shape deformations or appearance var-
iations. Other methods use 3D descriptors such as LBP-TOP
for directly extracting features from sequences of frames.

While these types of feature extraction methods are com-
mon to all modalities, it has been found that thermal images
are not fit to extract geometric information due to the dull-
ness of the captured image. In the RGB case, geometric
information is never extracted at the local static level. While
it should be possible to do so, we hypothesise that current
2D registration techniques lack the level of precision
required to extract useful information from local shape
deformations. In the case of learned features, to the best of
our knowledge, dynamic feature extraction has not been
attempted. It is clearly possible to do so though, and it has
been done for other problems.

In the case of AU intensity estimation many studies were
published either from the point of view of geometrical vs
appearance representations [49], [239] or the fusion between
RGB and 3D [236], [237]. Because of the scarcity of intensity
labeled data, to the best of our knowledge all approaches
until now have used predesigned representations. While
the vast majority of the works perform a global feature
extraction with or without selecting features there are cases
of sparse representations, most notably in the work of Jeni
et al. [242]. Due to their briefness, subtleness and localiza-
tion, most of the methods for detecting microexpressions
use local, dynamic, appearance representations extracted
from high frequency video. Detection and classification of
posed [246], [247], [249] and more recently spontaneous
microexpressions [248] have been proposed. For predicting
levels of depression, local, dynamic representations of
appearance were usually combined with acoustic represen-
tations [254], [255], [256], [257]. Because of the subtleness of
facial configurations in naturalistic environments most pre-
designed representations are dynamically extracting the
appearance [263], [264], [265], [266]. Recently successful
methods in naturalistic environments learn representations
[108], [146], [147], [152] from sequences of frames. As the
amount of labelled data increases, learning the representa-
tions could be a future trend in intensity estimation. More
complex representation schemes for recognizing spontane-
ous microexpressions and approaches combining RGB with
other modalities, especially 3D, for microexpression analy-
sis is also a direction we foresee.

5.3 Recognition

Recognition approaches infer emotions ormental states based
on the extracted FE features. The vast majority of techniques
use a multi-class classification model where a set of emotions
(usually the six basic emotions defined by Ekman) or mental
states are to be detected. A continuous approach is also possi-
ble. In the continuous case, emotions are represented as points
in a pre-defined space, where usually each dimension cor-
responds to an expressive trait. This representation has
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advantages such as the ability to unsupervisedly define emo-
tions and mental states, and discriminate subtle expression
differences. The ease of interpretation of multi-class appr-
oaches made continuous approaches less frequent. Recogni-
tion is also divided into static and dynamic approaches, with
static approaches being dominated by conventional classifica-
tion and regression methods for categorical and continuous
problems respectively. In the case of dynamic approaches,
usually dynamic Bayesian Network techniques are used, but
also others such as Conditional RandomForests and recurrent
neural networks.

Many methods focus on recognizing a limited set of pri-
mary emotions (usually 6) [115], [116], [123], [130], [137],
[145], [146]. This is mainly due to a lack of more diverse data-
sets. Increasing the number of recognized expressions usually
follows twomaindirections. First, expressions can be encoded
based on FACS AUs [99], [113], [127], [139] instead of directly
being classified. This provides a comprehensive coding of FEs
without directly making a judgement on their intentionality.
Other methods exploit additional information provided by
3D facial data. Capturing depth information has important
advantages over traditional RGB datasets. It is more invariant
to rotation and illumination and capturesmore subtle changes
on the face. This is useful for detecting microexpressions and
facilitates recognizing a wider range of expressions, which
would bemore difficult with RGB alone.

In recent years, a critical analysis has been made about the
limitations of estimating AUs intensity from classification
scores [236], [237], [238] and estimation directly from features
were analysed. Research suggests that using classifier scores
for predicting intensity is conceptually wrong and that inten-
sity levels should be directly learned from the ground truth
[238]. Some works treat a limited subset of AUs while other
are more extensive. Usually we talk about AU intensity esti-
mation, but significant works in estimating intensity of pain
[49], [231] or smile [243], [244] also exist. Startingwith the pub-
lication of the BU-3DFE dataset which provides four different
intensity levels for every expression, advancements in recog-
nizing primary expressions from 3D samples were made
[118], [120], [124], [125], [131], [133], [217]. In naturalistic envi-
ronments, most approaches target primitive FEs of affect.
Methods for recognizing cognitive states [267], positive and
negative affect fromgroups of people [268] or liking/not-link-
ing of online media for predicting buying behaviour for mar-
keting purposes [269] are also common. Probably a major
trend in the future will be taking into account context and rec-
ognizing ever more complex FEs from multiple data sources.
Additionally, a recent trend which remains to be further
exploited ismapping faces to continuous emotional spaces.

5.4 Multimodal Fusion

Multimodality can enrich the representation space and
improve emotion inference [270], [271], either by using dif-
ferent video sensors (RGB, Depth, Thermal) or by combin-
ing FEs with other sources such as body pose, audio,
language or physiological information (brain signals, car-
diovascular acivity etc.). Because the different modalities
can be redundant, concatenating features might not be effi-
cient. A common solution is to use fusion (see Section 3.2.5
for details). Four main fusion approaches have been identi-
fied: direct, early, late and sequential fusion, in most cases

using conventional fusion techniques. Some more adva-
nced late fusion techniques have been identified such as
fuzzy inference systems and bayesian inference. The adva-
ntage of these methods lies on the introduction of comple-
mentary sources of information. For instance, the radiance
at different facial regions, captured through thermal imag-
ing, varies according to changes in the blood flow triggered
by emotions [198], [210]. Context (situation, interacting per-
sons, place etc) can also improve emotion inference [272],
[273]. [274] shows that the recognition of FE is strongly
influenced by the body posture and that this becomes
more important as the FE is more ambiguous. In another
study, it is shown that not only emotional arousal can be
detected from visual cues but voice can also provide indi-
cations of specific emotions through acoustic properties
such as pitch range, rhythm, and amplitude or duration
changes [156]. In the case of mood and personality traits
prediction fusion of acoustic and visual cues has been
extensively exploited. Conclusions were mixed. First, FEs
were proven to correlate better than visual activity with
personality traits [187]. Practically though, while many
studies have showed improvements of prediction when
combined with physiological or acoustic cues, FEs remain
marginal in the study of personality trait prediction [252],
[258], [260], [261]. We think years to come will probably
bring improvements towards integration of visual and
non-visual modalities, like acoustic, language, gestures, or
physiological data coming from wearable devices.
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