toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Y. Patel; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas; C.V. Jawahar edit   pdf
url  doi
openurl 
  Title Self-Supervised Visual Representations for Cross-Modal Retrieval Type (down) Conference Article
  Year 2019 Publication ACM International Conference on Multimedia Retrieval Abbreviated Journal  
  Volume Issue Pages 182–186  
  Keywords  
  Abstract Cross-modal retrieval methods have been significantly improved in last years with the use of deep neural networks and large-scale annotated datasets such as ImageNet and Places. However, collecting and annotating such datasets requires a tremendous amount of human effort and, besides, their annotations are limited to discrete sets of popular visual classes that may not be representative of the richer semantics found on large-scale cross-modal retrieval datasets. In this paper, we present a self-supervised cross-modal retrieval framework that leverages as training data the correlations between images and text on the entire set of Wikipedia articles. Our method consists in training a CNN to predict: (1) the semantic context of the article in which an image is more probable to appear as an illustration, and (2) the semantic context of its caption. Our experiments demonstrate that the proposed method is not only capable of learning discriminative visual representations for solving vision tasks like classification, but that the learned representations are better for cross-modal retrieval when compared to supervised pre-training of the network on the ImageNet dataset.  
  Address Otawa; Canada; june 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICMR  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ PGR2019 Serial 3288  
Permanent link to this record
 

 
Author Ali Furkan Biten; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Good News, Everyone! Context driven entity-aware captioning for news images Type (down) Conference Article
  Year 2019 Publication 32nd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 12458-12467  
  Keywords  
  Abstract Current image captioning systems perform at a merely descriptive level, essentially enumerating the objects in the scene and their relations. Humans, on the contrary, interpret images by integrating several sources of prior knowledge of the world. In this work, we aim to take a step closer to producing captions that offer a plausible interpretation of the scene, by integrating such contextual information into the captioning pipeline. For this we focus on the captioning of images used to illustrate news articles. We propose a novel captioning method that is able to leverage contextual information provided by the text of news articles associated with an image. Our model is able to selectively draw information from the article guided by visual cues, and to dynamically extend the output dictionary to out-of-vocabulary named entities that appear in the context source. Furthermore we introduce“ GoodNews”, the largest news image captioning dataset in the literature and demonstrate state-of-the-art results.  
  Address Long beach; California; USA; june 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes DAG; 600.129; 600.135; 601.338; 600.121 Approved no  
  Call Number Admin @ si @ BGR2019 Serial 3289  
Permanent link to this record
 

 
Author Axel Barroso-Laguna; Edgar Riba; Daniel Ponsa; Krystian Mikolajczyk edit   pdf
url  doi
openurl 
  Title Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters Type (down) Conference Article
  Year 2019 Publication 18th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 5835-5843  
  Keywords  
  Abstract We introduce a novel approach for keypoint detection task that combines handcrafted and learned CNN filters within a shallow multi-scale architecture. Handcrafted filters provide anchor structures for learned filters, which localize, score and rank repeatable features. Scale-space representation is used within the network to extract keypoints at different levels. We design a loss function to detect robust features that exist across a range of scales and to maximize the repeatability score. Our Key.Net model is trained on data synthetically created from ImageNet and evaluated on HPatches benchmark. Results show that our approach outperforms state-of-the-art detectors in terms of repeatability, matching performance and complexity.  
  Address Seul; Corea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes MSIAU; 600.122 Approved no  
  Call Number Admin @ si @ BRP2019 Serial 3290  
Permanent link to this record
 

 
Author Edgar Riba; D. Mishkin; Daniel Ponsa; E. Rublee; G. Bradski edit   pdf
url  doi
openurl 
  Title Kornia: an Open Source Differentiable Computer Vision Library for PyTorch Type (down) Conference Article
  Year 2020 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Aspen; Colorado; USA; March 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes MSIAU; 600.122; 600.130 Approved no  
  Call Number Admin @ si @ RMP2020 Serial 3291  
Permanent link to this record
 

 
Author Javad Zolfaghari Bengar; Abel Gonzalez-Garcia; Gabriel Villalonga; Bogdan Raducanu; Hamed H. Aghdam; Mikhail Mozerov; Antonio Lopez; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Temporal Coherence for Active Learning in Videos Type (down) Conference Article
  Year 2019 Publication IEEE International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 914-923  
  Keywords  
  Abstract Autonomous driving systems require huge amounts of data to train. Manual annotation of this data is time-consuming and prohibitively expensive since it involves human resources. Therefore, active learning emerged as an alternative to ease this effort and to make data annotation more manageable. In this paper, we introduce a novel active learning approach for object detection in videos by exploiting temporal coherence. Our active learning criterion is based on the estimated number of errors in terms of false positives and false negatives. The detections obtained by the object detector are used to define the nodes of a graph and tracked forward and backward to temporally link the nodes. Minimizing an energy function defined on this graphical model provides estimates of both false positives and false negatives. Additionally, we introduce a synthetic video dataset, called SYNTHIA-AL, specially designed to evaluate active learning for video object detection in road scenes. Finally, we show that our approach outperforms active learning baselines tested on two datasets.  
  Address Seul; Corea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP; ADAS; 600.124; 602.200; 600.118; 600.120; 600.141 Approved no  
  Call Number Admin @ si @ ZGV2019 Serial 3294  
Permanent link to this record
 

 
Author Corina Krauter; Ursula Reiter; Albrecht Schmidt; Marc Masana; Rudolf Stollberger; Michael Fuchsjager; Gert Reiter edit   pdf
url  openurl
  Title Objective extraction of the temporal evolution of the mitral valve vortex ring from 4D flow MRI Type (down) Conference Article
  Year 2019 Publication 27th Annual Meeting & Exhibition of the International Society for Magnetic Resonance in Medicine Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The mitral valve vortex ring is a promising flow structure for analysis of diastolic function, however, methods for objective extraction of its formation to dissolution are lacking. We present a novel algorithm for objective extraction of the temporal evolution of the mitral valve vortex ring from magnetic resonance 4D flow data and validated the method against visual analysis. The algorithm successfully extracted mitral valve vortex rings during both early- and late-diastolic filling and agreed substantially with visual assessment. Early-diastolic mitral valve vortex ring properties differed between healthy subjects and patients with ischemic heart disease.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISMRM  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ KRS2019 Serial 3300  
Permanent link to this record
 

 
Author Parichehr Behjati Ardakani; Pau Rodriguez; Armin Mehri; Isabelle Hupont; Carles Fernandez; Jordi Gonzalez edit   pdf
doi  openurl
  Title OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling Network Type (down) Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 2693-2702  
  Keywords  
  Abstract Super-resolution (SR) has achieved great success due to the development of deep convolutional neural networks (CNNs). However, as the depth and width of the networks increase, CNN-based SR methods have been faced with the challenge of computational complexity in practice. More- over, most SR methods train a dedicated model for each target resolution, losing generality and increasing memory requirements. To address these limitations we introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model. We make the following contributions: first, we introduce a lightweight feature extractor that enforces efficient reuse of information through a novel recursive structure of skip and dense connections. Second, to maximize the performance of the feature extractor, we propose a model agnostic reconstruction module that generates accurate high-resolution images from overscaled feature maps obtained from any SR architecture. Third, we introduce a multi-scale loss function to achieve generalization across scales. Experiments show that our proposal outperforms previous state-of-the-art approaches in standard benchmarks, while maintaining relatively low computation and memory requirements.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes ISE; 600.119; 600.098 Approved no  
  Call Number Admin @ si @ BRM2021 Serial 3512  
Permanent link to this record
 

 
Author Hamed H. Aghdam; Abel Gonzalez-Garcia; Joost Van de Weijer; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Active Learning for Deep Detection Neural Networks Type (down) Conference Article
  Year 2019 Publication 18th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 3672-3680  
  Keywords  
  Abstract The cost of drawing object bounding boxes (ie labeling) for millions of images is prohibitively high. For instance, labeling pedestrians in a regular urban image could take 35 seconds on average. Active learning aims to reduce the cost of labeling by selecting only those images that are informative to improve the detection network accuracy. In this paper, we propose a method to perform active learning of object detectors based on convolutional neural networks. We propose a new image-level scoring process to rank unlabeled images for their automatic selection, which clearly outperforms classical scores. The proposed method can be applied to videos and sets of still images. In the former case, temporal selection rules can complement our scoring process. As a relevant use case, we extensively study the performance of our method on the task of pedestrian detection. Overall, the experiments show that the proposed method performs better than random selection.  
  Address Seul; Korea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes ADAS; LAMP; 600.124; 600.109; 600.141; 600.120; 600.118 Approved no  
  Call Number Admin @ si @ AGW2019 Serial 3321  
Permanent link to this record
 

 
Author Felipe Codevilla; Eder Santana; Antonio Lopez; Adrien Gaidon edit   pdf
url  doi
openurl 
  Title Exploring the Limitations of Behavior Cloning for Autonomous Driving Type (down) Conference Article
  Year 2019 Publication 18th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 9328-9337  
  Keywords  
  Abstract Driving requires reacting to a wide variety of complex environment conditions and agent behaviors. Explicitly modeling each possible scenario is unrealistic. In contrast, imitation learning can, in theory, leverage data from large fleets of human-driven cars. Behavior cloning in particular has been successfully used to learn simple visuomotor policies end-to-end, but scaling to the full spectrum of driving behaviors remains an unsolved problem. In this paper, we propose a new benchmark to experimentally investigate the scalability and limitations of behavior cloning. We show that behavior cloning leads to state-of-the-art results, executing complex lateral and longitudinal maneuvers, even in unseen environments, without being explicitly programmed to do so. However, we confirm some limitations of the behavior cloning approach: some well-known limitations (eg, dataset bias and overfitting), new generalization issues (eg, dynamic objects and the lack of a causal modeling), and training instabilities, all requiring further research before behavior cloning can graduate to real-world driving. The code, dataset, benchmark, and agent studied in this paper can be found at github.  
  Address Seul; Korea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes ADAS; 600.124; 600.118 Approved no  
  Call Number Admin @ si @ CSL2019 Serial 3322  
Permanent link to this record
 

 
Author Zhengying Liu; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Sergio Escalera; Adrien Pavao; Hugo Jair Escalante; Wei-Wei Tu; Zhen Xu; Sebastien Treguer edit   pdf
url  openurl
  Title AutoCV Challenge Design and Baseline Results Type (down) Conference Article
  Year 2019 Publication La Conference sur l’Apprentissage Automatique Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We present the design and beta tests of a new machine learning challenge called AutoCV (for Automated Computer Vision), which is the first event in a series of challenges we are planning on the theme of Automated Deep Learning. We target applications for which Deep Learning methods have had great success in the past few years, with the aim of pushing the state of the art in fully automated methods to design the architecture of neural networks and train them without any human intervention. The tasks are restricted to multi-label image classification problems, from domains including medical, areal, people, object, and handwriting imaging. Thus the type of images will vary a lot in scales, textures, and structure. Raw data are provided (no features extracted), but all datasets are formatted in a uniform tensor manner (although images may have fixed or variable sizes within a dataset). The participants's code will be blind tested on a challenge platform in a controlled manner, with restrictions on training and test time and memory limitations. The challenge is part of the official selection of IJCNN 2019.  
  Address Toulouse; Francia; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ LGJ2019 Serial 3323  
Permanent link to this record
 

 
Author Reza Azad; Maryam Asadi Aghbolaghi; Mahmood Fathy; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions Type (down) Conference Article
  Year 2019 Publication Visual Recognition for Medical Images workshop Abbreviated Journal  
  Volume Issue Pages 406-415  
  Keywords  
  Abstract In recent years, deep learning-based networks have achieved state-of-the-art performance in medical image segmentation. Among the existing networks, U-Net has been successfully applied on medical image segmentation. In this paper, we propose an extension of U-Net, Bi-directional ConvLSTM U-Net with Densely connected convolutions (BCDU-Net), for medical image segmentation, in which we take full advantages of U-Net, bi-directional ConvLSTM (BConvLSTM) and the mechanism of dense convolutions. Instead of a simple concatenation in the skip connection of U-Net, we employ BConvLSTM to combine the feature maps extracted from the corresponding encoding path and the previous decoding up-convolutional layer in a non-linear way. To strengthen feature propagation and encourage feature reuse, we use densely connected convolutions in the last convolutional layer of the encoding path. Finally, we can accelerate the convergence speed of the proposed network by employing batch normalization (BN). The proposed model is evaluated on three datasets of: retinal blood vessel segmentation, skin lesion segmentation, and lung nodule segmentation, achieving state-of-the-art performance.  
  Address Seul; Korea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ AAF2019 Serial 3324  
Permanent link to this record
 

 
Author Maria Ines Torres; Javier Mikel Olaso; Cesar Montenegro; Riberto Santana; A.Vazquez; Raquel Justo; J.A.Lozano; Stephan Schogl; Gerard Chollet; Nazim Dugan; M.Irvine; N.Glackin; C.Pickard; Anna Esposito; Gennaro Cordasco; Alda Troncone; Dijana Petrovska Delacretaz; Aymen Mtibaa; Mohamed Amine Hmani; M.S.Korsnes; L.J.Martinussen; Sergio Escalera; C.Palmero Cantariño; Olivier Deroo; O.Gordeeva; Jofre Tenorio Laranga; E.Gonzalez Fraile; Begoña Fernandez Ruanova; A.Gonzalez Pinto edit   pdf
url  openurl
  Title The EMPATHIC project: mid-term achievements Type (down) Conference Article
  Year 2019 Publication 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments Abbreviated Journal  
  Volume Issue Pages 629-638  
  Keywords  
  Abstract Maria Ines Torres; Javier Mikel Olaso, César Montenegro, Riberto Santana, A. Vázquez, Raquel Justo, J. A. Lozano, Stephan Schlögl, Gérard Chollet, Nazim Dugan, M. Irvine, N. Glackin, C. Pickard, Anna Esposito, Gennaro Cordasco, Alda Troncone, Dijana Petrovska-Delacrétaz, Aymen Mtibaa, Mohamed Amine Hmani, M. S. Korsnes, L. J. Martinussen, Sergio Escalera, C. Palmero Cantariño, Olivier Deroo, O. Gordeeva, Jofre Tenorio-Laranga, E. Gonzalez-Fraile, Begoña Fernández-Ruanova, A. Gonzalez-Pinto  
  Address Rhodes Greece; June 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PETRA  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ TOM2019 Serial 3325  
Permanent link to this record
 

 
Author Daniel Sanchez; Meysam Madadi; Marc Oliu; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Multi-task human analysis in still images: 2D/3D pose, depth map, and multi-part segmentation Type (down) Conference Article
  Year 2019 Publication 14th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract While many individual tasks in the domain of human analysis have recently received an accuracy boost from deep learning approaches, multi-task learning has mostly been ignored due to a lack of data. New synthetic datasets are being released, filling this gap with synthetic generated data. In this work, we analyze four related human analysis tasks in still images in a multi-task scenario by leveraging such datasets. Specifically, we study the correlation of 2D/3D pose estimation, body part segmentation and full-body depth estimation. These tasks are learned via the well-known Stacked Hourglass module such that each of the task-specific streams shares information with the others. The main goal is to analyze how training together these four related tasks can benefit each individual task for a better generalization. Results on the newly released SURREAL dataset show that all four tasks benefit from the multi-task approach, but with different combinations of tasks: while combining all four tasks improves 2D pose estimation the most, 2D pose improves neither 3D pose nor full-body depth estimation. On the other hand 2D parts segmentation can benefit from 2D pose but not from 3D pose. In all cases, as expected, the maximum improvement is achieved on those human body parts that show more variability in terms of spatial distribution, appearance and shape, e.g. wrists and ankles.  
  Address Lille; France; May 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FG  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ SMO2019 Serial 3326  
Permanent link to this record
 

 
Author Ajian Liu; Jun Wan; Sergio Escalera; Hugo Jair Escalante; Zichang Tan; Qi Yuan; Kai Wang; Chi Lin; Guodong Guo; Isabelle Guyon; Stan Z. Li edit   pdf
openurl 
  Title Multi-Modal Face Anti-Spoofing Attack Detection Challenge at CVPR2019 Type (down) Conference Article
  Year 2019 Publication IEEE International Conference on Computer Vision and Pattern Recognition-Workshop Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Anti-spoofing attack detection is critical to guarantee the security of face-based authentication and facial analysis systems. Recently, a multi-modal face anti-spoofing dataset, CASIA-SURF, has been released with the goal of boosting research in this important topic. CASIA-SURF is the largest public data set for facial anti-spoofing attack detection in terms of both, diversity and modalities: it comprises 1,000 subjects and 21,000 video samples. We organized a challenge around this novel resource to boost research in the subject. The Chalearn LAP multi-modal face anti-spoofing attack detection challenge attracted more than 300 teams for the development phase with a total of 13 teams qualifying for the final round. This paper presents an overview of the challenge, including its design, evaluation protocol and a summary of results. We analyze the top ranked solutions and draw conclusions derived from the competition. In addition we outline future work directions.  
  Address California; June 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ LWE2019 Serial 3329  
Permanent link to this record
 

 
Author Shifeng Zhang; Xiaobo Wang; Ajian Liu; Chenxu Zhao; Jun Wan; Sergio Escalera; Hailin Shi; Zezheng Wang; Stan Z. Li edit   pdf
url  doi
openurl 
  Title A Dataset and Benchmark for Large-scale Multi-modal Face Anti-spoofing Type (down) Conference Article
  Year 2019 Publication 32nd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 919-928  
  Keywords  
  Abstract Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, existing face anti-spoofing benchmarks have limited number of subjects (≤170) and modalities (≤2), which hinder the further development of the academic community. To facilitate face anti-spoofing research, we introduce a large-scale multi-modal dataset, namely CASIA-SURF, which is the largest publicly available dataset for face anti-spoofing in terms of both subjects and visual modalities. Specifically, it consists of 1,000 subjects with 21,000 videos and each sample has 3 modalities (i.e., RGB, Depth and IR). We also provide a measurement set, evaluation protocol and training/validation/testing subsets, developing a new benchmark for face anti-spoofing. Moreover, we present a new multi-modal fusion method as baseline, which performs feature re-weighting to select the more informative channel features while suppressing the less useful ones for each modal. Extensive experiments have been conducted on the proposed dataset to verify its significance and generalization capability. The dataset is available at https://sites.google.com/qq.com/chalearnfacespoofingattackdete/.  
  Address California; June 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ ZWL2019 Serial 3331  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: