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Figure 1. Driving scenarios from our new benchmark, based on the CARLA simulator, where the agent needs to react to dynamic changes

in the environment, handle clutter (only part of the environment is causally relevant), and predict complex sensorimotor controls (lateral

and longitudinal). We show that Behavior Cloning yields state-of-the-art policies in these complex scenarios and investigate its limitations.

Abstract

Driving requires reacting to a wide variety of complex

environment conditions and agent behaviors. Explicitly

modeling each possible scenario is unrealistic. In contrast,

imitation learning can, in theory, leverage data from large

fleets of human-driven cars. Behavior cloning in particular

has been successfully used to learn simple visuomotor

policies end-to-end, but scaling to the full spectrum of

driving behaviors remains an unsolved problem. In this

paper, we propose a new benchmark to experimentally

investigate the scalability and limitations of behavior

cloning. We show that behavior cloning leads to state-of-

the-art results, executing complex lateral and longitudinal

maneuvers, even in unseen environments, without being

explicitly programmed to do so. However, we confirm some

limitations of the behavior cloning approach: some well-

known limitations (e.g., dataset bias and overfitting), new

generalization issues (e.g., dynamic objects and the lack of

a causal modeling), and training instabilities, all requiring

further research before behavior cloning can graduate to

real-world driving. The code, dataset, benchmark, and

agent studied in this paper can be found at http://

github.com/felipecode/coiltraine/blob/

master/docs/exploring_limitations.md

∗Work done during an internship at TRI.

1. Introduction

End-to-end behavior cloning for autonomous driving has

recently attracted renewed interest [10, 8, 12, 43, 30] as a

simple alternative to traditional modular approaches used

in industry [13, 24]. In this paradigm, perception and con-

trol are learned simultaneously using a deep neural network.

Explicit sub-tasks are not defined, but may be implicitly

learned from data. These sensorimotor controllers are typ-

ically obtained by imitation learning from human demon-

strations [2, 33, 1, 39]. The deep neural network learns,

without being explicitly programmed, to recognize patterns

associating sensory input (e.g., a single RGB image) with a

desired reaction in terms of vehicle control parameters pro-

ducing a target maneuver. Behavior cloning can directly

learn from large fleets of human-driven vehicles without re-

quiring a fixed ontology and extra manually labeled data.

Finally, end-to-end imitation systems can be learned off-

line in a safe way, in contrast to reinforcement learning

approaches that typically require millions of trial and error

runs in the target environment [25] or a faithful simulation.

End-to-end imitation systems can suffer a domain shift

between the off-line training experience and the on-line be-

havior [35]. This problem, however, can be partially ad-

dressed in practice by data augmentation [8, 12]. Nonethe-

less, in spite of the early and recent successes of behavior

cloning for end-to-end driving [32, 23, 10, 8, 12], it has not
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yet proved to scale to the full spectrum of driving behaviors,

such as reacting to multiple dynamic objects.

In this paper, we propose a new benchmark, called

NoCrash, and perform a large scale analysis of end-to-

end behavioral cloning systems in complex driving con-

ditions not studied in this context before. We use a high

fidelity simulated environment based on the open source

CARLA simulator [14] to enable reproducible large scale

off-line training and on-line evaluation in over 80 hours

of driving under several different conditions. We describe

a strong Conditional Imitation Learning baseline, derived

from [12], that significantly improves upon state-of-the-

art modular [26], affordance based [37], and reinforcement

learning [27] approaches, both in terms of generalization

performance in training environments and unseen ones.

Despite its positive performance, we identify limitations

that prevent behavior cloning from successfully graduating

to real-world applications. First, although generalization

performance should scale with training data, generalizing

to complex conditions is still an open problem with a lot

of room for improvement. In particular, we show that no

approach reliably handles dense traffic scenes with many

dynamic agents. Second, we report generalization issues

due to dataset biases and the lack of a causal model. We

indeed observe diminishing returns after a certain amount

of demonstrations, and even characterize a degradation of

performance on unseen environments. Third, we observe a

significant variability in generalization performance when

varying the initialization or the training sample order, sim-

ilar to on-policy RL issues [19]. We conduct experiments

estimating the impact of ImageNet pre-training and show

that it is not able to fully reduce the variance. This suggests

the order of training samples matters for off-policy Imita-

tion Learning, similar to the on-policy case [46].

Our paper is organized as follows. Section 2 describes

related work, Section 3 our strong behavior cloning base-

line, Section 4 our evalution protocol, including our new

NoCrash benchmark, Section 5 our experimental results,

and Section 6 our conclusion.

2. Related Work

Behavior cloning for driving dates back to the work of

Pomerleau [32] on lane following, later followed by other

approaches [23], including going beyond driving [1, 40].

The distributional shift between the training and testing dis-

tributions is the main known limitation of this approach,

which might require on-policy data collection [34, 35], ob-

tained by the learning agent. Nonetheless, recent works

have proposed effective off-policy solutions, for instance

by expanding the space of image/action pairs either using

noise [22, 12], extra sensors [8], or modularization [37, 26,

5]. We show, however, that there are other limitations im-

portant to consider in complex driving scenarios, in particu-

lar dataset bias and high variance, which both harm scaling

generalization performance with training data.

Dataset bias is a core problem of real-world machine

learning applications [42, 6] that can have dramatic effects

in a safety-critical application like autonomous driving. Im-

itation learning approaches are particularly sensitive to this

issue, as the learning objective might be dominated by the

main modes in the training data. Going beyond the original

CARLA benchmark [14], we use our new NoCrash bench-

mark to quantitatively assess the magnitude of this problem

on generalization performance for more realistic and chal-

lenging driving behaviors.

High variance is a key problem in powerful deep neu-

ral networks, and we show that high performance behavior

cloning models are particularly suffering from this. This

problem is related to sensitivity to both initialization and

sampling order [31], reproducibility issues in Reinforce-

ment Learning [19, 29], and the need to move beyond the

i.i.d. data assumption towards curriculum learning [7] for

sensorimotor control [46, 4].

Driving benchmarks fall in two main categories: off-

line datasets, e.g., [15, 36, 44, 18], or on-line environments.

We focus here on on-line benchmarks, as visuomotor mod-

els performing well in dataset-based evaluations do not nec-

essarily translate to good driving policies [11]. Driving

is obviously a safety-critical robotic application. Conse-

quently, for safety and to enable reproducibility, researchers

focus on using photo-realistic simulation environments. In

particular, the CARLA open-source driving simulator [14]

is emerging as a standard platform for driving research,

used in [12, 30, 37, 27, 26]. Note, however, that transfer-

ring policies from simulation to the real-world is an open

problem [28] out of the scope of this paper, although recent

works have shown encouraging results [30, 45].

3. A Strong Baseline for Behavior Cloning

In this section, we first describe the behavior cloning

framework we use, its limitations, and a robustified base-

line that tries to tackle these issues.

3.1. Conditional Imitation Learning

Behavior cloning [32, 38, 35, 25] is a form of supervised

learning that can learn sensorimotor policies from off-line

collected data. The only requirements are pairs of input

sensory observations associated with expert actions. We use

an expanded formulation for self-driving cars called Condi-

tional Imitation Learning, CIL [12]. It uses a high-level nav-

igational command c that disambiguates imitation around

multiple types of intersections. Given an expert policy

π∗(x) with access to the environment state x, we can exe-

cute this policy to produce a dataset, D = {〈oi, ci,ai〉}
N

i=1
,

where oi are sensor data observations, ci are high-level

commands (e.g., take the next right, left, or stay in lane)

9330



and ai = π∗(xi) are the resulting vehicle actions (low-level

controls). Observations oi = {i, vm} contain a single im-

age i and the ego car speed vm [12] added for the system to

properly react to dynamic objects on the road. Without the

speed context, the model cannot learn if and when it should

accelerate or brake to reach a desired speed or stop.

We want to learn a policy π parametrized by θ to produce

similar actions to π∗ based only on observations o and high-

level commands c. The best parameters θ∗ are obtained by

minimizing an imitation cost ℓ:

θ
∗ = argmin

θ

∑

i

ℓ
(

π(oi, ci;θ),ai
)

. (1)

In order to evaluate the performance of the learned policy

π(oi, ci;θ) on-line at test time, we assume access to a score

function giving a numeric value expressing the performance

of the policy π on a given benchmark (cf. section 4).

3.2. Limitations

In addition to the distributional shift problem [35], be-

havior cloning presents some key limitations.

Bias in Naturalistic Driving Datasets. The appeal of

behavior cloning lies in its simplicity and theoretical scal-

ability, as it can indeed learn by imitation from large off-

line collected demonstrations (e.g., using driving logs from

manually driven production vehicles). It is, however, sus-

ceptible to dataset biases like all learning methods. This

is exacerbated in the case of imitation learning of driving

policies, as most of real-world driving consists in either a

few simple behaviors or a heavy tail of complex reactions

to rare events. Consequently, this can result in performance

degrading as more data is collected, because the diversity of

the dataset does not grow fast enough compared to the main

mode of demonstrations. This phenomenon was not clearly

measured before. Using our new NoCrash benchmark (sec-

tion 4), we confirm it may happen in practice.

Causal Confusion. Related to dataset bias, end-to-end

behavior cloning can suffer from causal confusion [16]:

spurious correlations cannot be distinguished from true

causes in observed training demonstration patterns unless

an explicit causal model or on-policy demonstrations are

used. Our new NoCrash benchmark confirms the theoretical

observation and toy experiments of [16] in realistic driving

conditions. In particular, we identify a typical failure mode

due to a subtle dataset bias: the inertia problem. When the

ego vehicle is stopped (e.g., at a red traffic light), the prob-

ability it stays static is indeed overwhelming in the training

data. This creates a spurious correlation between low speed

and no acceleration, inducing excessive stopping and diffi-

cult restarting in the imitative policy. Although mediated

perception approaches that explicitly model causal signals

like traffic lights do not suffer from this theoretical limi-

tation, they still under-perform end-to-end learning in un-

Figure 2. Our proposed network architecture, called CILRS, for

end-to-end urban driving based on CIL [12]. A ResNet perception

module processes an input image to a latent space followed by two

prediction heads: one for controls and one for speed.

constrained environments, because not all causes might be

modeled (e.g., some potential obstacles) and errors at the

perception layer (e.g., missed detections) are irrecoverable.

High variance. With a fixed off-policy training dataset,

one would expect CIL to always learn the same policy in

different runs of the training phase. However, the cost func-

tion is optimized via Stochastic Gradient Descent (SGD),

which assumes the data is independent and identically dis-

tributed [9]. When training a reactive policy on snapshots of

longer human demonstrations included in the training data,

the i.i.d. assumption does not hold. Consequently, we might

observe a high sensitivity to the initialization and the order

in which the samples are seen during training. We confirm

this in our experiments, finding an overall high variance due

to both initialization and sampling order, following the de-

composition in [31]:

Var(π) = ED

[

V arI(π|D)
]

+ V arD
(

EI [π|D]
)

, (2)

where I denotes the randomness in initialization. Because

the policy π is evaluated on-line in simulated environments,

we evaluate in practice the variance of the score on the test

benchmark, and report results when freezing the initializa-

tion and/or varying the sampling order for different training

datasets D (including of varying sizes).

3.3. Model

In order to explore the aforementioned limitations of be-

havior cloning, we propose a robustified CIL model de-

signed to improve on [12] while remaining strictly off-

policy. Our network architecture, called CILRS, is shown

in Figure 2. We describe our enhancements below.

Deeper Residual Architecture. We use a ResNet34

architecture [17] for the perception backbone P(i). In

the presence of large amounts of data, using deeper ar-

chitectures can be an effective strategy to improve per-

formance [17]. In particular, it can reduce both bias
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and variance, maintaining in particular a constant vari-

ance due to training set sampling with both network width

and depth [31]. For end-to-end driving, the choice of ar-

chitecture has been mostly limited to small networks so

far [8, 12, 37] to avoid overfitting on limited datasets. In

contrast, we notice that bigger models have better general-

ization performance on learning reactions to dynamic ob-

jects and traffic lights in complex urban environments.

Speed Prediction Regularization. To cope with the

inertia problem without an explicit mapping of potential

causes or on-policy interventions, we jointly train a senso-

rimotor controller with a network that predicts the ego ve-

hicle’s speed. Both neural networks share the same repre-

sentation via our ResNet perception backbone. Intuitively,

what happens is that this joint optimization enforces the

perception module to have speed related features into the

learned representation. This reduces the dependency on in-

put speed as the only way to get dynamics of the scene,

leveraging instead visual cues that are predictive of the car’s

velocity (e.g., free space, curves, traffic light states, etc).

Other changes. We use L1 as loss function ℓ instead

of the mean squared error (MSE), as it is more correlated

to driving performance [11]. As our NoCrash benchmark

consists of complex realistic driving conditions in the pres-

ence of dynamic agents, we collect demonstrations from an

expert game AI using privileged information to drive cor-

rectly (i.e. always respecting rules of the road and not crash-

ing into any obstacle). Robustness to heavy noise in the

demonstrations is beyond the scope of our work, as we aim

to explore limitations of behavior cloning methods in spite

of good demonstrations. Finally, we pre-trained our percep-

tion backbone on ImageNet to reduce initialization variance

and benefit from generic transfer learning, a standard prac-

tice in deep learning seldom explored for behavior cloning.

4. Evaluation

In this section we discuss the simulated environment we

use, CARLA, and review the original CARLA benchmark.

Due to its limitations, we propose a new benchmark, called

NoCrash, that tries to better evaluate driving controllers re-

action to dynamic objects. This new benchmark, thanks to

its complexity, allows further analysis on limitations of be-

havior cloning and other policy learning methods.

4.1. Simulated Environment

We use the CARLA simulator [14] version 0.8.4. The

CARLA environment is divided in two different towns.

Town 01 contains 2.9 km of drivable roads in a suburban

environment. Town 02 is approximately 1.4 km of drivable

roads, also in a suburban environment.

The CARLA environment may contain dynamic obsta-

cles that interact with the ego car. Pedestrians, for instance,

might cross the road on random occasions without any ap-

parent previous notice. This action forces the ego car to

promptly react. The CARLA environment also contains a

diversity of car brands that cruise at different speeds. Over-

all it provides a diverse, photo-realistic, and dynamic envi-

ronment with challenging driving conditions (cf. Figure 1).

The original CARLA benchmark [14] evaluates driving

controllers on several goal directed tasks of increasing dif-

ficulty. Three of the tasks consist of navigation in an empty

town and one of them in a town with a small number of

dynamic objects. Each task is tested in four different condi-

tions increasingly different from the training environment.

The conditions are: same as training, new weather condi-

tions that are derivatives from those seen during training,

and a new town that has different buildings and different

shadow patterns. Note that the biggest generalization test is

the combination of new weather and new town.

The goal directed tasks are evaluated based on success

rate. If the agent reaches the goal regardless of what hap-

pened during the episode, this episode is considered a suc-

cess. The collisions and other infractions are considered

and the average number of kilometers between infractions

is measured. This evaluation induces the benchmark to be

mainly focused on problems of a static nature. These prob-

lems consider the environmental conditions and the static

objects of the world like buildings and trees. Thus, the orig-

inal CARLA benchmark mostly evaluates skills such as lane

keeping and performing 90 degrees turns.

4.2. NoCrash Benchmark

We propose a new larger scale CARLA driving bench-

mark, called NoCrash, designed to test the ability of ego

vehicles to handle complex events caused by changing traf-

fic conditions (e.g., traffic lights) and dynamic agents in the

scene. For this benchmark, we propose different tasks and

metrics than the original CARLA benchmark [14] to pre-

cisely measure specific reaction patterns that we know good

drivers must master in urban conditions.

We propose three different tasks, each one corresponding

to 25 goal directed episodes. In each episode, the agent

starts at a random position and is directed by a high-level

planner into reaching some goal position. The three tasks

have the same set of start and end positions, as well as an

increasing level of difficulty as follows:

1. Empty Town: no dynamic objects.

2. Regular Traffic: moderate number of cars and pedes-

trians.

3. Dense Traffic: large number of pedestrians and heavy

traffic (dense urban scenario).

Similar to the CARLA Benchmark, NoCrash has six dif-

ferent weather conditions, where four were seen in train-
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ing and two reserved for testing. It also has two differ-

ent towns, one that is seen during training, and the other

reserved for testing. For more details about the bench-

mark configuration, please refer to the supplementary ma-

terial. As mentioned above, the measure of success of an

episode should be more representative of the agent capa-

bilities to react to dynamic objects. The original CARLA

benchmark [14] has a goal conditioned success rate met-

ric that is computed separately from a kilometers between

infractions metric. The latter metric was proposed to be

analogous to the one commonly used by real-world driv-

ing evaluations where the number of human interventions

per kilometer is counted [20]. These interventions usually

happen when the safety driver notices some inconsistent be-

havior that would lead the vehicle to a possibly dangerous

state. On a potentially inconsistent behavior, the human in-

tervention will put the vehicle back to a safe state. However,

in the CARLA benchmark analysis, when an infraction is

made, the episode continues after the infraction, leading to

some inaccuracy in infraction counting. An example of in-

accuracy includes whether a crash after leaving the road be

counted as one or two infractions.

In NoCrash, instead of counting the number of infrac-

tions per kilometer, we end the episode as failing when any

collision bigger than a fixed magnitude happens. With this

limitation, we are setting a lower bound and have a guaran-

tee of acceptable behaviors based on the measured percent-

age of success. Furthermore, this makes the evaluation even

more similar to the km/interventions evaluation used in real

world, since a new episode always sends the agent back to

a safe starting state. In summary, we consider an episode

to be successful if the agent reaches a certain goal under a

time limit without colliding with any object. We also care

about the ability of the agent to obey traffic rules. In par-

ticular, we measure and report the percentage of traffic light

violations in Supplementary material. Note that an episode

is not terminated when a traffic light violation occurs unless

they are followed by a collision.

5. Experiments

In this section we detail our protocol for model training

and briefly show that it is competitive with the state of the

art. We also explore several corner cases to explore the lim-

itations of the behavior cloning approach.

5.1. Training Details

First, we collected more than 400 hours of realistic sim-

ulated driving data from a single town of the CARLA en-

vironment using more than 200 GPU-days. We used an ex-

pert driving AI agent that leverages privileged information

about the scene to drive naturally and well in complex con-

ditions. After automatically filtering the data for simulation

failures, duplicates, and edge cases using simple rules, we

built a dataset of 100 hours of driving, called CARLA100.

To enable running a wide range of experiments, we train

all methods using a subset of 10 hours of expert demon-

strations by default. We also report larger scale training

experiments and scalability analyses in Section 5.3 and in

supplementary material. One of the major differences of

the training dataset, when compared to CIL, is that stopping

for red traffic lights is considered on the demonstrator data.

More details about the dataset are given in the supplemen-

tary material.

Training controllers on this dataset, we found that aug-

mentation was not as crucial as reported by previous works

[12, 26]. The only regularization we found important for

performance was using a 50% dropout rate [41] after the

last convolutional layer. Any larger dropout led us to under-

fitting models. All models were trained using Adam [21]

with minibatches of 120 samples and an initial learning rate

of 0.0002. At each iteration, a minibatch is sampled ran-

domly from the entire dataset and presented to the network

for training. If we detect that the training error has not de-

creased for over 1, 000 iterations we divide the learning rate

by 10. We used a 2 hours validation dataset to discover

when to stop the training process. We validate every 20k

iterations and if the validation error increases for three iter-

ations we stop the training process and use this checkpoint

to test on the benchmarks, both CARLA and NoCrash. We

build a validation dataset as described in [11].

5.2. Comparison with the state of the art

We compare our results using both the original CARLA

benchmark from [14] and our proposed NoCrash bench-

mark. We compare two versions of our method: “CILRS”

(our CIL extension with a ResNet architecture and speed

prediction, as described in section 3), and a version without

the speed prediction branch noted “CILR”. We compare our

method with the original CIL from [12] and three state-of-

the-art approaches: CAL [37], MT [26], and CIRL [27]. In

contrast to end-to-end behavior cloning, these methods en-

force some modularization that require extra information at

training time, such as affordances (CAL), semantic segmen-

tation (MT), or extra on-policy interaction with the environ-

ment (CIRL). Our approach only requires a fixed off-policy

dataset of demonstrations.

We show results on the original CARLA benchmark [14]

in Table 1 and results on our proposed NoCrash benchmark

in Table 2. While most methods perform well in most con-

ditions on the original CARLA benchmark, they all perform

significantly worse on NoCrash, especially when trying to

generalize to new conditions. This confirms the usefulness

of NoCrash in terms of exploring the limitations of driving

policy learning due to its more challenging nature.

In addition, our proposed CILRS model significantly im-

proves over the state of the art, e.g., +9% and +26% on
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Training conditions New town & weather

Task CIL[12] CIRL[27] CAL[37] MT[26] CILR CILRS CIL[12] CIRL[27] CAL[37] MT[26] CILR CILRS

Straight 98 98 100 96 94 96 80 98 94 96 92 96

One Turn 89 97 97 87 92 92 48 80 72 82 92 92

Navigation 86 93 92 81 88 95 44 68 68 78 88 92

Nav. Dynamic 83 82 83 81 85 92 42 62 64 62 82 90

Table 1. Comparison with the state of the art on the original CARLA benchmark. The “CILRS” version corresponds to our CIL-based

ResNet using the speed prediction branch, whereas “CILR” is without this speed prediction. These two models and CIL are the only

ones that do not use any extra supervision or online interaction with the environment during training. The table reports the percentage of

successfully completed episodes in each condition, selecting the best seed out of five runs.

Training conditions New Town & Weather

Task CIL[12] CAL[37] MT[26] CILR CILRS CIL[12] CAL[37] MT[26] CILR CILRS

Empty 79± 1 81± 1 84± 1 92± 1 97 ± 2 24± 1 25± 3 57± 0 66± 2 90 ± 2

Regular 60± 1 73± 2 54± 2 72± 5 83 ± 0 13± 2 14± 2 32± 2 54± 2 56 ± 2

Dense 21± 2 42 ± 3 13± 4 28± 1 42 ± 2 2± 0 10± 0 14± 2 13± 4 24 ± 8

Table 2. Results on our NoCrash benchmark. Mean and standard deviation on three runs, as CARLA 0.8.4 has significant non-determinism.

CARLA “Nav. Dynamic” in training and new conditions

respectively, +10% and +24% on NoCrash Regular traffic

in training and new conditions respectively. The significant

improvements in generalization conditions, both w.r.t. CIL

and mediated approaches, confirm that our improved end-

to-end behavior cloning architecture can effectively learn

complex general policies from demonstrations alone. Fur-

thermore, our ablative analysis shows that speed prediction

is helpful: CILR can indeed be up to −14% worse than

CILRS on NoCrash.

5.3. Analysis of Limitations

Although clearly above the state of the art, our improved

CILRS architecture nonetheless sees a strong degradation

of performance similar to all other methods in the presence

of challenging driving conditions. We investigate how this

degradation relates to the limitations of behavior cloning

mentioned in Section 3.2 by using the NoCrash benchmark,

in particular to better evaluate the interaction of the agents

with dynamic objects.

Generalization in the presence of dynamic objects.

Limited generalization was previously reported for end-to-

end driving approaches [14]. In our experiments, we ob-

served additional, and more prominent, generalization is-

sues when the control policies have to deal with dynamic

objects. Table 2 indeed shows a large drop in performance

as we change to tasks with more traffic, e.g., −55% and

−66% from Empty to Dense traffic in NoCrash training /

new conditions respectively. In contrast, results in Empty

town only degrade by −7% when changing to a new envi-

ronment and weather. Therefore, the learned policies have

a much harder time dealing robustly with a large number

of vehicles and pedestrians. Furthermore, this impacts all

policy learning methods, including those using additional

supervision or on-policy demonstrations, often even more

than our proposed CILRS method.

Driving Dataset Biases. Figure 3 evaluates the effect of

the amount of training demonstrations on the learned pol-

icy. Here we compare models trained with 2, 10, 50 and 100

hours of demonstrations. The plots show the mean success

rate and standard deviation over four different training cy-

cles with different random seeds. Our best results on most

of the scenarios were obtained by using only 10 hours of

training data, in particular on the “Dense Traffic” tasks and

novel conditions such as New Weather and New Town.

These results quantify a limitation described in Sec-

tion 3.2: the risk of overfitting to data that lacks diversity.

This is here exacerbated by the limited spatial extent and

visual variety of our environment, including in terms of dy-

namic objects. We indeed observed that some types of vehi-

cles tend to elicit better reactions from the policy than oth-

ers. The more common the vehicle model and color, the

better the trained agent reacts to it. This raises ethical chal-

lenges in automated driving, requiring further research in

fair machine learning for decision-making systems [6].

Causal confusion and the inertia problem. The main

problem we observe caused by bias is the inertia problem

stemming from causal confusion, as detailed in Section 3.2.

Figure 4 shows the percentage of episodes that failed due to

the agent staying still, without any intention to use the throt-

tle, for at least 8 seconds before the timeout. Our results

show the percentage of episodes failed due to that inertia

problem increases with the amount of data used for train-

ing. We proposed to use a speed prediction branch as part

of our CILRS model (cf. Figure 2) to mitigate this prob-
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Figure 3. Due to biases in the data, the results may get either saturated or worse with increasing amounts of training data.

lem. Figure 5 shows the percentage of successes for the

New Weather & Town conditions on different tasks with

and without speed prediction. We observe that the speed

prediction branch can substantially improve the success rate

thanks to its regularization effect. It is, however, not a final

solution to this problem, as we still observe instances of the

inertia problem after using this approach.

High Variance. Repeatability of the training process is

crucial for enhancing trust in end-to-end models. Unfortu-

nately, we can still see drastic changes in the learned pol-

icy performance due to the variance caused by initialization

and data sampling (cf. Section 3.2). Figure 6 compares the

cause of episode termination for two models where the only

difference is the random seed during training. The Model

S1 has a much higher chance of ending episodes due to ve-

hicle collisions. Qualitatively, it seemed to have learned a

less general braking policy and was more prone to rear-end

collisions with other vehicles. On the other hand, Model S2

is able to complete more episodes and is less likely to fail

due to vehicle crashes. However, we can see that it times

out more, showing a tendency to stop a lot, even in non

threatening situations. This can be seen by analyzing the

histograms of the throttle applied by both models during the

benchmark, as shown in Figure 7. We can see a tendency

for throttles of higher magnitude on Model S1.

As off-policy imitation learning uses a static dataset for

training, this randomness comes from the order in which

training data is sampled and the initialization of the random

weights. This can possibly define which minima the mod-

els converge to. Table 3 quantifies the effect of initialization

on the success rate of driving tasks by computing the vari-

ance expressed in Equation 2. The expected policy score

was computed by averaging twelve different training runs.

We also consider the variance with and without ImageNet

initialization. We can see that the success rate can change

by up to 42% for tasks with dynamic objects. ImageNet

initialization tends to reduce the training variability, mainly

due to smaller randomness on initialization but also due to

a more stable learned policy.

Task Variance

CILRS

Empty 23%

Regular 26%

Dense 42%

CILRS (ImageNet)

Empty 4%

Regular 12%

Dense 38%

Table 3. Estimated variance of the success rate of CILRS on

NoCrash computed by training 12 times the same model with dif-

ferent random seeds. The variance is reduced by fixing part of the

initial weights with ImageNet pre-training.

6. Conclusion

Our new driving dataset (CARLA100), benchmark

(NoCrash), and end-to-end sensorimotor architecture

(CILRS) indicate that behavior cloning on large scale off-

policy demonstration datasets can vastly improve over the

state of the art in terms of generalization performance,

including when comparing to mediated perception ap-

proaches with additional supervision. This is thanks to us-

ing a deeper residual architecture with an additional speed

prediction target and good regularization.

Nonetheless, our extensive experimental analysis has

shown that some big challenges remain open. First of all,

the amount of dynamic objects in the scene directly hurts

all policy learning methods, as multi-agent dynamics are

not directly captured. Second, the self-supervised nature

of behavior cloning enables it to scale to large datasets of

demonstrations, but with diminishing returns (or worse) due

to driving-specific dataset biases that require explicit treat-

ment, in particular biases that create causal confusion (e.g.,

the inertia problem). Existing mitigation strategies cur-

rently need more informative intermediate representations,

either learned [3] or using strong domain knowledge [5].

Third, the large variance resulting from initialization and

sampling order indicates that multiple runs on the same off-
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Figure 4. The percentage of episodes that failed due to the inertia problem. We can see that by increasing the amount of data, this bias may

further degrade the generalization capabilities of the models.

Figure 5. Comparison between the results with and without the

speed prediction and different amounts of training demonstrations.

We report the results only for the case were highest generalization

is needed (New Weather and Town).

policy data is key to identify the best possible policies. This

is part of the broader deep learning challenges regarding

non-convexity and initialization, curriculum learning, and

training stability.
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Figure 6. Cause of episode termination on NoCrash for two CILRS

models (trained on 10 hours with ImageNet initialization) with

identical parameters but different random seeds. The episodes

were ran under “New Weather & Town” conditions of the “Dense

Traffic” task.

Figure 7. Probability distribution of having certain throttle values

comparing models with two different random seeds but trained

with the same hyper-parameters and data. We can see that S1 (red)

is much more likely to have a higher throttle value.
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