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Abstract

We present the design and beta tests of a new machine
learning challenge called AutoCV (for Automated Com-
puter Vision), which is the first event in a series of chal-
lenges we are planning on the theme of Automated Deep
Learning1. We target applications for which Deep Learn-
ing methods have had great success in the past few years,
with the aim of pushing the state of the art in fully auto-
mated methods to design the architecture of neural networks
and train them without any human intervention. The tasks
are restricted to multi-label image classification problems,
from domains including medical, areal, people, object, and
handwriting imaging. Thus the type of images will vary a
lot in scales, textures, and structure. Raw data are provided
(no features extracted), but all datasets are formatted in a
uniform tensor manner (although images may have fixed or

1https://autodl.chalearn.org/

variable sizes within a dataset). The participants’s code
will be blind tested on a challenge platform in a controlled
manner, with restrictions on training and test time and mem-
ory limitations. The challenge is part of the official selection
of IJCNN 2019.

1. Introduction

Machine learning, and deep learning in particular, has
achieved considerable success in recent years. This in a
wide variety of tasks ranging from computer vision, to nat-
ural language processing. State-of-the-art in deep learning,
aligned with the increasing computational power of per-
sonal computers and accessible Graphic Processing Units
(GPU) with strong computational capabilities, caused a rev-
olution with respect to traditional computer vision, with un-
precedented and outstanding results in different types of
tasks such as image classification, recognition, and cap-

1
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tioning, among others. However, so far this success cru-
cially relies on human intervention in many steps (e.g., for
data pre-processing, feature engineering, model selection,
hyperparameter optimization, etc.). As the complexity of
these tasks is often beyond non-experts, the rapid growth
of deep learning applications has created a demand for off-
the-shelf or reusable methods, which can be used easily and
without expert knowledge. It is in this context that the Au-
tomated Deep Learning (AutoDL) field arises.

Previous and pioneer work on Automated Machine
Learning (AutoML) in the context of supervised learning
(see, e.g., [8]) comprises the basis for taking autonomy
into the context of deep learning (AutoDL). In broad terms,
the goal of AutoML is to develop “universal learning ma-
chines” capable of solving supervised learning problems
without any user intervention. Great progress has been
achieved in this topic, with quite competitive solutions (e.g.,
[5]) being publicly available to the average user. Such solu-
tions, however, have been designed to work on tabular for-
matted data. That is, the feature extraction and representa-
tion strategy is responsibility of the user. AutoDL goes one
step further, by attempting to automate the feature extrac-
tion and representation processes, in addition to the learn-
ing step. Ideally, with AutoDL we would like to find an
autonomous solution that receives as input any type of in-
put data and automatically generates a model that solves the
associated task. As a first step in such direction, we orga-
nize the AutoCV challenge in which we ask participants to
develop automatic methods for learning from raw visual in-
formation.

The objective of the new AutoCV challenge is to address
some of the limitations of the previous challenges and to
provide an ambitious benchmark for code wrappers around
TensorFlow [1], which should be able to solve multi-label
classification problems without any human intervention, in
limited time, on any large-scale dataset. Data will be for-
matted in a uniform way as series of example-label pairs
having identical corresponding structures, e.g. {X1, Y1},
{X2, Y2}, etc. This will lend itself in particular to the use
of convolutional neural networks (CNN), where Xi are im-
ages, Yi are binary vectors indicating which classes Xi be-
longs to. Although the use of Tensorflow will be encour-
aged by providing participants with a starting kit including
sample code demonstrating how to solve the problems at
hand, the participants will be free to provide solutions with
any deep learning / machine learning framework, such as
scikit learn [18] and PyTorch [17].

This paper describes the design of the AutoCV chal-
lenge, the first competition of its kind that aims at automat-
ing model construction for the analysis of visual informa-
tion. A distinctive feature of this challenge is that models
will be able to deal with raw data directly, hence making it
a perfect testbed for representation learning and CNN based

methods. Please note that although we expect deep learning
models to obtain the best performance, participants can pro-
pose solutions based in any machine learning formulation.
This competition is the first of a series that aims at boosting
research on AutoDL.

The article is organized as follows. In Section 1.1, we
provide a mathematical formulation of the central problem:
the AutoML problem. In Section 1.2, we summarize related
work. In Section 2, we present the overall competition de-
sign with details on the competition protocol, data, metrics
used for evaluation, etc. In Section 3, we introduce several
baseline methods and report their performance on formatted
datasets. We conclude our paper in section 4.

1.1. Mathematical Formulation of the Problem

Since the AutoCV challenge aims to tackle the AutoML
problem within the field of computer vision, we provide
herein a mathematical formulation of the AutoML problem.
We focus on the supervised learning case for current chal-
lenge.

Suppose we have a dataset D = {(xi, yi)}ni=1, asso-
caited to a supervidsed learning task, where xi ∈ X are
examples (e.g. images) and yi ∈ Y are their corresponding
labels (e.g. “dog” or “cat” or a binary vector). To define a
task, we first do a train/test split D = Dtr ∪Dte then sepa-
rate examples and labels in test set to getD∅

te = {x|(x, y) ∈
Dte} and Yte = {y|(x, y) ∈ Dte}. A supervised learning
task (either classification or regression) is then defined by
the 5-tuple 2

T = (Dtr, D
∅
te, L,BT , BS)

where L : Y × Y → R is a loss function measuring the
performance L(y′, y) of predictions y′ with respect to true
labels y, BT and BS are time and space budget restrictions,
respectively (these budgets are given with respect to a fixed
universal Turing machine, e.g. a modern computer). The
goal of the task is to find an algorithm

f : x 7→ y

capable of mapping each example x to a prediction y of
its corresponding label, within time and space budget lim-
its BT and BS . Where we want this algorithm f to be as
“good” as possible at making predictions. Such goodness is
measured by a performance function P (f ;Dte, L) typically
defined by

P (f ;Dte, L) = − 1

|Dte|
∑

(x,y)∈Dte

L(f(x), y)

Then the problem can be formulated as (Hard-coding
Problem)

arg max
f

P (f ;Dte, L). (1)

2In some scenarios, the set of test examples D∅
te is unknown at training

time too and we have for theses cases T = (Dtr, L,BT , BS).
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An important remark about (1) is that the test labels in Dte

are unknown at training time. This also implies that the val-
ues of the objective function in (1) are unknown too. The
final performance is only known at test time. Thus to find
a satisfying solution for (1), some estimation techniques
are often applied, using either human intuition or statisti-
cal methods (e.g. using a validation set).

To solve (1) automatically, machine learning ap-
proaches exploit the dataset Dtr in the task T =
(Dtr, D

∅
te, L,BT , BS). The key is to construct a learning

algorithm
A : T 7→ f

that takes a task T as input and outputs an algorithm f ,
within time budget BT and space budget BS . The problem
then becomes (Machine Learning Problem)

arg max
A

P (f̂ ;Dte, L), where f̂ = A(T ). (2)

Note that the maximization task of finding A in (2) is usu-
ally done by human experts, or more specifically by ma-
chine learning experts.

In real applications and machine learning research, the
learning algorithm A is usually encoded by many hyper-
parameters (e.g. kernel of SVM, neural network architec-
ture, optimizer parameters such as learning rate, regularizer
parameters such as weight decay, etc), which turn out to
be crucial to obtain acceptable performance. So to stress
out the importance of these hyperparameters, sometimes we
also write learning algorithms as

Aλ, λ ∈ Λ

with λ representing the hyperparameters of Aλ and Λ the
hyperparameter space. Manually tuning these hyperparam-
eters is a time consuming trial-and-error process, and this is
where AutoML enters. A big part of AutoML’s goal is in-
deed to automate the hyperparameter tuning process. This
subdomain of AutoML is called hyperparameter optimiza-
tion (HPO). An HPO algorithm

A : T 7→ A

aims to automatically solve (2), i.e. to automatically find a
learning algorithmA given a task T . A typical process of an
HPO algorithm goes like: try different learning algorithms
Aj (with different hyperparameters) on T , estimate their
performance Pj and in the end suggest the most promising
one(s). In the literature, the HPO problem is sometimes de-
fined as the Full Model Selection (FMS) problem [4] or the
Combined Algorithm Selection and Hyperparameter opti-
mization (CASH) problem [22]. We recall the CASH prob-
lem as follows. Given training setDtr, we do a k-fold cross-
validation [12] by splittingDtr into k equal-sized partitions
Dtr = D

(1)
va ∪ · · · ∪ D(k)

va and write D(i)
tr = Dtr\D(i)

va .

Consider a set of algorithms A = {A(1), . . . , A(l)} with as-
sociated hyperparameter spaces Λ(1), . . . ,Λ(l). The CASH
problem is defined by

arg max
A(j)∈A,λ∈Λ(j)

1

k

k∑
i=1

P (fij ;D
(i)
va , L), where fij = A

(j)
λ (D

(i)
tr ).

We see that this CASH formulation actually tries to solve
(2) automatically by using k-fold cross-validation as esti-
mation of the test score P (f ;Dte, L). Again, as in the case
of classic machine learning formulation, this CASH formu-
lation for AutoML is but one possible solution to the real
problem (2), with manual choice of A, Λ(i), cross valida-
tion as estimation, fold number k, etc.

In real life, machine learning experts never deal with
only one single task T in their life. They gain experience
by working on many different tasks {Tj} and often become
more and more efficient at finding good learning algorithms.
More formally, this process can be described as follows.
The past experience is described by3

D = {(Tj , Aj , Pj)}Nj=1

with Pj being (an estimation of) the performance got by
applying learning algorithm Aj to task Tj . And we wish to
construct a meta-learning algorithm

A : D 7→ A

that learns an HPO algorithm A by exploiting past experi-
ence D. Note that the set of past experience D can be dy-
namically enriched during the process of applying A, since
A can typically try a new learning algorithm Anew on a
task T and get a performance Pnew. Then we can append
the 3-tuple (T , Anew, Pnew) to D since it becomes past ex-
perience too. We note here the similarity between this pro-
cess and what we have in reinforcement learning. Keeping
the dynamic nature of D in mind, we can consider hyper-
parameter optimization as a special case of meta-learning
with D = ∅ at beginning and that the search of A is done
only on a fixed task T . Although in the literature, the term
“meta-learning” lays more emphasis on the fact of using
past experience on different datasets to a new dataset. So
to avoid confusion, we’ll call both an HPO algorithm or a
meta-learning algorithm an AutoML algorithm.

But what is the objective of A? Given a list Dte of tasks
to solve (recall that Dte contains 5-tuples of the form T :=
(Dtr, Dte, L,BT , BS)), one form of the objective can be
formulated as (AutoML Problem)

arg max
A

∑
T ∈Dte

P (f̂ ;Dte, L)

s.t. f̂ = Â(T ) and Â = Â(T ), Â = A(D).

(3)

3We can also consider D = {Tj , Aj , fj , Pj}Nj=1 with trained fj =

Aj(Tj). Then we are talking about transfer learning instead of meta-
learning. But here we’ll make no distinction for simplicity.
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From this definition, we see that an AutoML algorithm A
should exploit D (a dataset of tasks and past experience)
and produce A (an HPO algorithm), which will produce (or
select) a learning algorithm Â for each task T , and the goal
is to maximize the sum (or equivalently the average) of the
performance on all tasks to solve in Dte. To add more clar-
ity, we’ll call Â = A(D) the meta-learning step, Â = Â(T )

the hyperparameter optimization step and f̂ = Â(T ) the
usual supervised learning step. And here we emphasize the
importance of the imposed time and space budget limitsBT
and BS for each task. This restriction is crucial for an Au-
toML algorithm to be applicable in real-life scenarios.

In addition to the definition of the AutoML problem in
(3), another important aspect that AutoML intends to ex-
plore is the any-time learning framework for AutoML al-
gorithms. In an any-time learning setting, an AutoML al-
gorithm A should produce (for each task T ) a ready-to-
predict learning algorithm At (or simply ft) at any times-
tamp t ∈ R+. And we judge the performance ofA based on
the sequence {At}t∈R+

instead of considering just the final
one AT . This means that we want our AutoML algorithm
to not only produce correct predictions at final time but also
be fast and efficient. And this urges AutoML algorithms to
carefully deal with exploration-exploitation trade-off. It’s
not hard to image that this any-time learning setting of the
challenge will make participants’ algorithms more robust
and ready to be applied to real-life problem solving.

The problem approached in the AutoCV challenge is that
of solving the AutoML problem defined in (3) for scene un-
derstanding tasks in an any-time learning setting.

1.2. State of the Art

According to Murdock et al. [16], while much manual
engineering effort has been dedicated to the task of design-
ing deep architectures that are able to effectively general-
ize from available training data, model selection is typi-
cally performed using subjective heuristics by experienced
practitioners. Although freeing users from the trouble-
some handcrafted feature extraction by providing a uni-
form feature extraction classification framework, DCNNs
still require a handcrafted design of their architectures [15].
Hence, most deep architectures for image classification
learn shared image representations with a single model.

It is well known that lower layers of deep neural net-
works tend to represent low-level image features while
higher layers encode higher-level concepts. Intuitively, and
as reported in [16], categories that are more similar should
share more information than those that are very different.
Thus, training independent fine-grained models for these
subsets of related labels could result in specialized features
that are tuned to differentiating between subtle visual dif-
ferences between similar categories.

Hierarchical deep networks [23] attempt to incorporate

information from a known hierarchy to improve predic-
tion performance without requiring architecture changes by
learning multi-task models with shared lower layers and
parallel, domain-specific higher layers. However, hyper-
parameters such as the location of branches and the rela-
tive allocation of nodes between them must still be spec-
ified prior to training. Ideally, model selection should be
performed automatically, allowing the architecture to adapt
to training data. As a step towards this goal, authors [16]
proposed Blockout, an approach for simultaneously learn-
ing both the model architecture and parameters. Inspired
by Dropout [10], Blockout can be viewed as a technique
for stochastic regularization that adheres to hierarchically-
structured model architectures.

Pérez-Rúa et al. [19] addressed the problem of finding
an optimal neural architecture design for a given image
classication task. They proposed the Efficient Progressive
Neural Architecture Search (EPNAS) by aggregating two
state-of-the-art in neural architecture search, i.e., Sequen-
tial Model-Based Optimization (SMBO) [13], and increas-
ing training efficiency by sharing weights among sampled
architectures [20]. Carreira-Perpinán and Idelbayev [3] ad-
dressed the task of pruning neural networks, which con-
sists of removing weights without degrading its perfor-
mance. In their work, pruning is formulated as an opti-
mization problem of finding the weights that minimize the
loss while satisfying a pruning cost condition. Neverthe-
less, the method neither has strong influence on the model
architecture nor on the model selection. Ma and Xia [15]
proposed a genetic DCNN designer to automatically gen-
erate the architecture of a DCNN for each given image
classification problem. First, they partition a DCNN into
multiple stacked meta convolutional blocks and fully con-
nected blocks. Then, they use refined evolutionary opera-
tions, including selection, mutation and crossover to evolve
a population of DCNN architectures. The main limitation
of this approach, as mentioned by the authors, is that al-
though the training of each generated DCNN is limited to
100 epochs, the proposed genetic DCNN designer has an
extremely high computational and space complexity, due to
storing and evaluating a large number of DCNN structures.

According to Cai et al. [2] techniques for automatically
designing deep neural network architectures such as rein-
forcement learning based approaches have recently shown
promising results. However, their success is based on vast
computational resources, making them difficult to be widely
used. A noticeable limitation is that they still design and
train each network from scratch during the exploration of
the architecture space, which is highly inefficient. In their
work, a new framework toward efficient architecture search
is proposed by exploring the architecture space based on the
current network and reusing its weights. A reinforcement
learning agent is employed as the meta-controller, whose
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action is to grow the network depth or layer width with
function-preserving transformations. Thus, previously val-
idated networks can be reused, optimizing computational
cost. The method was applied to explore the architecture
space of the plain convolutional neural networks (no skip-
connections, branching etc.).

As it can be seen, automated computer vision (i.e., model
architecture design and selection, hyper-parameter setting,
etc.) become an emerging research line, with a wide range
of possibilities (i.e., with respect to applications and ways to
be exploited), in particular when deep learning is employed.
Different approaches have been proposed in the past few
years, without a general solution. Furthermore, the diffi-
culty of comparing existing approaches relies on the lack of
benchmarks. This way, we expect the design of the present
AutoCV Challenge can help to advance the state-of-the-art
on this field.

2. Competition Design
This section describes the design of the AutoCV chal-

lenge. As previously mentioned, this competition asks par-
ticipants to develop AutoML methods to solve scene under-
standing tasks and starting from raw data.

2.1. Competition Protocol

AutoCV challenge adopts the same competition proto-
col as the upcoming AutoDL challenge [14]. The evalua-
tion process, for a single task, is shown in Figure 1. In this
competition, the same submission will be evaluated on 5
different tasks and the evaluation is handled in parallel, in
an asynchronous/parallel manner.

Some major differences between the AutoCV challenge
and prior AutoML challenges [6, 7] are:

1. Raw data: Data are no longer pre-processed in a uni-
form feature vector representation; instead, they are
formatted into TFRecords (a standard generic data for-
mat used by TensorFlow [1]) by keeping their raw na-
ture. For datasets with images under standard com-
pression formats (e.g. JPEG, BMP, GIF), we directly
use the bytes as data and decode them on the fly to have
a 3D tensor for each image.

2. Large scale datasets: For development, datasets will
all be under 4GB (after compression), for practical
reasons (See Section 2.2), however, for final testing,
datasets of hundreds of thousands of examples will be
used.

3. Any-time learning: The metric of evaluation (based
on learning curves, see Section 2.3) will force the par-
ticipants to provide algorithms that can make good pre-
dictions as early as possible.

Figure 1: AutoCV challenge’s evaluation process for one
task defined by Dtr, D

∅
te, L,BT , BS . Challenge partici-

pants have to provide a Python script named model.py
implementing the logic of their AutoCV algorithm (shown
as the dotted parallelogram). To evaluate its performance,
this script is imported in ingestion program (defined in
ingestion.py) in which it is trained on Dtr and pro-
duces a prediction Y tpred on D∅

te, where t is the timestamp.
The prediction Y tpred is then compared to true labels Yte
in scoring program (defined in score.py) and produces a
score st. This ingestion/scoring process is repeated until the
time budget T is used up (or until model.py actively stops
further training). At any time, the score sequence st0 , st1 , ...
is visualized as a learning curve and the area under learning
curve is used as the evaluation for this task. Note that scor-
ing is running in parallel with ingestion thus the time for
computing scores is not counted in the time participants’
code consumed (but the time used for training and predict-
ing is).

4. Fixed resource learning: The participants will be
given limited memory and computational resources to
run their code. They will be informed of resources
made available to them (number of cores, memory,
GPU type, etc.). Their (compressed) code size will be
limited to 300 MB, to allow submission of pre-trained
models with moderate complexity. Thus, pre-training
will be allowed, provided that the submission size limit
is respected.

5. Uniform tasks and metrics: All problems will be
multi-label classification problems and will be evalu-
ated with the same metric (see Section 2.3).

One key aspect of this challenge, and other past AutoML
challenges [8] we organized, is that it is a code submission
challenge. Participants will submit code that will be trained
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and tested on the challenge platform (see Sec. 2.5) without
any human intervention, on datasets they will never see.

The challenge will be run in one single phase. Feedback
score will be immediately provided on a leaderboard, using
5 feedback datasets (invisible to the participants, but visi-
ble to their submitted code). And this score is used for final
evaluation.

In the challenge, we have 2 types of datasets: public and
feedback. In contrast with some previous AutoML chal-
lenges [6, 7] in which the feedback data was distributed
to the participants (except for the target values of the val-
idation and test sets), in the AutoCV challenge, the prac-
tice datasets won’t be exposed to the participants directly.
Their code will be fully blind tested. However, several fully
labeled “public” datasets will be provided, and we intend
to set up a public repository to encourage participants to
exchange among themselves other datasets and to enable
meta-learning. A starting kit in Python with a TensorFlow
interface will be provided (Sec. 2.4). Moreover, several ex-
amples of sample submissions will be provided.

2.2. Data

We provide 10 image datasets for the AutoCV challenge.
They come from 5 different domains as follows: 1) hand-
writing recognition; 2) object recognition; 3) People re-
lated images (faces/emotions, etc); 4) Aerial images, and
5) Medical images. For either the 5 public datasets or the 5
feedback datasets, one dataset from each of the 5 domains
is used. A detailed description about the 5 public datasets
that are available to download is shown in Table 1.

All tasks are supervised learning problems, i.e., data
samples are provided in pairs {X,Y }, X being an input
image/tensor (which may have different number of channels
for each domain) and Y a target binary vector. The problem
is slightly simplified by the fact that for all images within a
particular dataset, the bundle structure will be fixed.

2.3. Evaluation Metrics

AutoCV challenge enforces any-time learning by scor-
ing participants with the Area under the Learning Curve
(ALC) (Figure 2).

The participants can train in increments of a chosen dura-
tion (not necessarily fixed) to progressively improve perfor-
mance, until the time limit is attained. Several predictions
can be made during the learning process and this allows us
to plot their learning curves, i.e., “performance” as a func-
tion of time. More precisely, for each prediction made at
a timestamp, we compute for each (binary) class the Area
Under ROC Curve (AUC), then normalize it (and average
over all classes) by

NAUC = 2 ∗AUC − 1.

Figure 2: Example of learning curve. We modified the Co-
daLab competition platform (Sec. 2.5) so participants can
save their results, at any intervals they choose, to incremen-
tally improve their performance, until the time limit is at-
tained. In this way, we can plot their learning curves: per-
formance as a function of time. By evaluating them with
the area under the learning curve, we push them to imple-
ment any-time learning methods. The x-axis corresponds to
timestamp but normalized to [0,1]. This figure shows an ex-
ample of possible over-fitting in which the participant could
have stopped further training earlier.

Then for each dataset, we compute the Area under Learning
Curve (ALC) of a submission as follows:

• at each timestamp t, we compute s(t), theNAUC (see
above) of the most recent prediction. In this way, s(t)
is a step function with respect to timestamp t;

• in order to normalize time to the [0, 1] interval, we per-
form a time transformation by

t̃(t) =
log(1 + t/t0)

log(1 + T/t0)

where T is the time budget (e.g. 1200 seconds = 20
minutes) and t0 is a reference time amount (e.g. 60
seconds).

• then compute the area under learning curve using the

6



Table 1: AutoCV datasets summary. We provide 10 datasets for the AutoCV challenge, among which 5 public datasets are
shown. Similar datasets have been formatted for the feedback and test phases, but will remain hidden for the participants.
“row” and “col” are image size (height and width, respectively). “var” indicates the dimension is not fixed and can vary
across examples.

Class Sample number Tensor dimension
# Dataset Domain number train test row col channel
1 Munster hand-writing 10 60000 10000 28 28 1
2 Chucky objects 100 48061 11939 32 32 3
3 Pedro people 26 80095 19905 var var 3
4 Decal aerial 11 634 166 var var 3
5 Hammer medical 7 8050 1965 600 450 3

formula

ALC =

∫ 1

0

s(t)dt̃(t)

=

∫ T

0

s(t)t̃′(t)dt

=
1

log(1 + T/t0)

∫ T

0

s(t)

t+ t0
dt

we see that s(t) is weighted by 1/(t + t0), giving a
stronger importance to predictions made at the begin-
ning of th learning curve.

The ALC gives the evaluation score for one task. Finally,
when ALC score is computed for all tasks, the final score
is obtained by the average rank (over all tasks among all
submissions). It should be emphasized that multi-class clas-
sification metrics are not being considered, i.e., each class
is scored independently.

2.4. Starting Kit

To encourage participants to participate in the AutoCV
Challenge, a starting kit, which can be downloaded from
the competition web page, will be provided. The purpose of
this starting kit is two-fold:
• Submission file: participants can directly upload this

zip file as a submission. They can also deploy their
own method and prepare a ZIP file for submission;

• Local test environment: it allows participants to have
a complete local submission handling environment (for
a single dataset). Thus they can easily run local tests,
using their own method (implemented in model.py) for
different dataset.

Both above utilities can be done following instructions in
the README.md file, contained in the starting kit4.

4https://github.com/zhengying-liu/autodl_
starting_kit_stable

2.5. CodaLab: platform for running competitions

As in previous versions of AutoML Challenge, the Au-
toCV challenge will run on CodaLab. The CodaLab plat-
form5 is a powerful open source framework for running
competitions that involve result or code submission. For
AutoCV Challenge, we created our own CodaLab instance6

so that computational resources can be adapted to the needs
of the Challenge. CodaLab facilitates the organization of
computational competitions from the organizers point of
view, as well as provide a rich set of tools (e.g., forum,
leaderboard, online submission, etc) to help participants.
In AutoCV, participants will be able to submit their codes,
and receive (almost) real-time feedback on a leaderboard
(i.e., during a development phase), where the performances
of different participants can be compared (as illustrated in
Fig. 3).

3. Baseline Methods and Experimental Results
3.1. Baseline Methods

In this section, we present baseline methods with dif-
ferent model complexity and requiring different amount
of computing resources, which have been applied on the
datasets used in the AutoCV Challenge.

3.1.1 Linear Classifier with Basic Scheduling

This baseline method uses a very simple architecture: a neu-
ral network with no hidden layer. In the feed-forward phase,
the input tensor is flattened then fully connected to the out-
put layer, with a sigmoid activation. During training, it uses
a sigmoid cross entropy loss (i.e., as if we are doing several
binary logistic regression independently at the same time)
and Adam optimizer [11] with default learning rate. The
batch size is fixed to 30 for both training and test.

If the input shape is variable, some preprocessing pro-
cedure is required. When it is the case, we simply resize

5https://competitions.codalab.org/
6https://autodl.lri.fr
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Figure 3: Illustration of the leaderboard shown in our CodaLab instance, developed specifically for AutoCV.

all images to have fixed shape 112 × 112 (the number of
channels is always fixed).

As we are in an any-time learning setting in AutoCV
challenge, we need to have a working predictor at any time.
According to the design of the challenge (Figure 1), this
means that we also need a strategy for scheduling training
and test. In this method, we propose following scheduling
strategy. At the beginning, the algorithm trains the neural
network for s = 10 steps. An estimation of time used per
step is computed. Then the number of training steps gets
doubled (s ← 2s) at each train/test call and the algorithm
computes the duration required for this number of training
steps using the estimation. This estimated duration is then
compared to remaining time budget (sent by ingestion pro-
gram). If there is still enough time, continue another call of
training; otherwise, actively stop the evaluation process.

3.1.2 Convolutional Neural Networks Trained from
Scratch

In this second baseline method, we use ResNet50 V2 [9].
The input image is resized to 128 × 128 and normalized
with respect to the mean and standard deviation of all im-
age pixel values. We assign sigmoid activation to the last
layer for all types of classification tasks, i.e. multi-class and
multi-label. The network is initialized with Xavier-Glorot
initialization and trained with cross entropy loss and Adam
optimizer with learning rate 0.001. We do not use any data
augmentation during training. The data is shuffled in each
epoch. The scheduling strategy is the same as the one de-
fined in Sec. 3.1.1.

3.1.3 Neural Networks with Pre-trained Weights

In our third baseline method, we use pre-trained Inception
V3 [21]. The Inception family appeals to many tricks in
order to improve the image classification performance. All
image inputs are resized to be 299 × 299. For grey im-
ages, we convert it to 3 channel and for images more than 3
channels, we extract the RGB channel. We use pre-trained
weight provided by Tensorflow and fine-tune the model
with cross entropy loss and default Adam optimizer. No
data augmentation nor advanced techniques are used. Data
is shuffled every epoch. The scheduling strategy is the same
as that in section 3.1.1.

3.2. Experiments on Public and Feedback Datasets

We ran above baseline methods on the formatted
datasets. All these experiments are carried out on Google
Cloud virtual machine instances under Ubuntu 18.04, with
one single GPU (Nvidia Tesla P100) and 16 GB Memory.
The time budget is fixed to 20 minutes for all tasks.

The results are presented in Table 2. We show results on
public and feedback datasets.

From Table 2, we see that the difficulty of different tasks
vary a lot. Indeed, the difficulty depends on many param-
eters such as image shape, number of examples, number
of classes, etc. This imposes participants’ algorithm to be
as flexible and robust as possible to provide satisfying any-
time solution.

We note that in some cases, even though the final perfor-
mance of ResNet/pre-trained Inception is better than that of
linear baseline (e.g. in the case of Munster or Saturn), its
overall ALC score is not better than linear baseline. This
can be explained by the fact that the training is longer for
ResNet (when the number of training steps is fixed) but the
performance is not significantly better at the starting point.
Thus it gains less Area under Learning Curve at beginning.

4. Conclusion and Further Work

We presented the design of a new challenge to stimu-
late the AutoML community to embrace deep learning and
tackle the hard problems of automating architecture design
and hyper-parameter search for models trained directly on
raw data. We have run baseline methods and verified the
feasibility of the tasks, given the allotted time and compu-
tational resources. The results will be reported at IJCNN
2019 and feedback from the community will be sought.
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Table 2: Baseline results on public and feedback datasets used in AutoCV challenge. Three baseline methods (linear, ResNet
and pre-trained Inception) are applied to all 10 datasets. Performances are in final normalized AUC (NAUC) and Area under
Learning Curve (ALC). These results are further visualized in Figure 4a and Figure 4b.

Linear ResNet50 V2 [9] Pre-trained Inception V3 [21]
# Dataset Domain NAUC ALC NAUC ALC NAUC ALC

Pu
bl

ic

1 Munster hand-writing 0.9628 0.8223 0.9999 0.5408 0.9950 0.5883
2 Chucky objects 0.2331 0.1643 0.7877 0.1914 0.9270 0.3289
3 Pedro people 0.2863 0.1733 0.8009 0.2115 0.5867 0.1805
4 Decal aerial 0.0982 0.0893 0.5833 0.2085 0.8861 0.5712
5 Hammer medical 0.1922 0.1596 0.1173 0.0238 0.7986 0.4742

Fe
ed

ba
ck

1 Ukulele hand-writing 0.3003 0.2747 0.9986 0.5093 0.4189 0.1276
2 Caucase objects 0.1249 0.0683 0.7801 0.1910 0.9897 0.3367
3 Beatriz people 0.2129 0.1829 0.5675 0.1350 0.6621 0.3212
4 Saturn aerial 0.9003 0.3507 0.9987 0.2860 0.9665 0.3621
5 Hippocrate medical 0.3743 0.1726 0.8314 0.2319 0.8452 0.4571

Figure 4: Visualization of baseline results.

(a) Normalized AUC (NAUC) of the final predictions of the
three baseline methods, after 20 minutes of training.

(b) Area under Learning Curve (ALC) of the three baseline
methods, with 20 minutes of training.
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