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Abstract

In recent years, deep learning-based networks have

achieved state-of-the-art performance in medical image

segmentation. Among the existing networks, U-Net has been

successfully applied on medical image segmentation. In this

paper, we propose an extension of U-Net, Bi-directional

ConvLSTM U-Net with Densely connected convolutions

(BCDU-Net), for medical image segmentation, in which we

take full advantages of U-Net, bi-directional ConvLSTM

(BConvLSTM) and the mechanism of dense convolutions.

Instead of a simple concatenation in the skip connection of

U-Net, we employ BConvLSTM to combine the feature maps

extracted from the corresponding encoding path and the

previous decoding up-convolutional layer in a non-linear

way. To strengthen feature propagation and encourage fea-

ture reuse, we use densely connected convolutions in the

last convolutional layer of the encoding path. Finally, we

can accelerate the convergence speed of the proposed net-

work by employing batch normalization (BN). The proposed

model is evaluated on three datasets of: retinal blood ves-

sel segmentation, skin lesion segmentation, and lung nodule

segmentation, achieving state-of-the-art performance.

1. Introduction

Medical images play a key role in medical treatment and

diagnosis. The goal of Computer-Aided Diagnosis (CAD)

systems is providing doctors with precise interpretation of

medical images to have better treatment of a large number

of people. Moreover, automatic processing of medical im-

ages results in reducing the time, cost, and error of human-

based processing. One of the main research areas in this
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field is medical image segmentation, being a critical step in

numerous medical imaging studies. Like other fields of re-

search in computer vision, deep learning networks achieve

outstanding results and use to outperform non-deep state-

of-the-art methods in medical imaging. Deep neural net-

works are mostly utilized in classification tasks, where the

output of the network is a single label or probability val-

ues associated labels to a given input image. These net-

works work fine thanks to some structural features [2] such

as: activation function, different efficient optimization algo-

rithms, and dropout as a regularizer for the network. These

networks require a large amount of data to train and pro-

vide a good generalization behavior given the huge number

of network parameters. A critical issue in medical image

segmentation is the unavailability of large (and annotated)

datasets. In medical image segmentation, per pixel labeling

is required instead of image level label.

Fully convolutional neural network (FCN) [17] was one

of the first deep networks applied to image segmentation.

Ronneberger et al. [21] extended this architecture to U-Net,

achieving good segmentation results leveraging the need of

a large amount of training data. Their network consists of

encoding and decoding paths. In the encoding path a large

number of feature maps with reduced dimensionality are ex-

tracted from the input data. The decoding path is used to

produce segmentation maps (with the same size as the in-

put) by performing up-convolutions. Many extensions of

U-Net have been proposed so far [2, 19]. The most impor-

tant modification is mainly about the skipping connections.

In some extended versions of U-Net, the extracted feature

maps in the skip connection are first fed to a processing

step (e.g. attention gates [19]) and then concatenated. The

main drawback of these networks is that the processing step

is performed individually for the two sets of feature maps,

and these features are then simply concatenated.



In this paper, we propose BCDU-Net, an extended ver-

sion of the U-Net, by including BConvLSTM [23] in the

skip connection and reusing feature maps with densely con-

volutions. The feature maps from the corresponding en-

coding layer have higher resolution while the feature maps

extracted from the previous up-convolutional layer contain

more semantic information. Instead of a simple concatena-

tion, combining these two kinds of feature maps with non-

linear functions may result in more precise segmentation

output. Therefore, in this paper we extend the U-Net archi-

tecture by adding BConvLSTM in the skip connection to

combine these two kinds of feature maps.

Having a sequence of convolutional layers may help the

network to learn more kinds of features; however, in many

cases, the network learns redundant features. To mitigate

this problem and enhance information flow through the net-

work, we utilize the idea of densely connected convolutions

[12]. In the last layer of the contracting path, convolutional

blocks are connected to all subsequent blocks in that layer

via channel-wise concatenation. Features which are learned

in each block are passed forward to the next block. This

strategy helps the method to learn a diverse set of features

based on the collective knowledge gained by previous lay-

ers, and therefore, avoiding learning redundant features..

Furthermore, we accelerate the convergence speed of the

network by employing BN after the up-convolution filters.

We evaluate the proposed BCDU-Net on three different ap-

plications of: retinal blood vessel segmentation (DRIVE

datase), Skin lesion segmentation (ISIC 2018 dataset) and

lung nodule segmentation (Lung dataset). The experimen-

tal results demonstrate that the proposed network achieves

superior performance than state-of-the-art alternatives. 1

2. Related Work

One of the most crucial tasks in medical imaging is se-

mantic segmentation. Before the revolution of deep learn-

ing in computer vision, traditional handcrafted features

were exploited for semantic segmentation. During the last

few years, deep learning-based approaches have outstand-

ingly improved the performance of classical image segmen-

tation strategies. Based on the exploited deep architecture,

these approaches can be divided into three groups of: con-

volutional neural network (CNN), fully convolutional net-

work (FCN), and recurrent neural network (RNN).

2.1. Convolutional Neural Network (CNN)

Cui et al. [10] exploited CNN for automatic segmenta-

tion of brain MRI images. The authors first divided the in-

put images into some patches and then utilized these patches

for training CNN. To handle an arbitrary number of modal-

ities as the input data, Kleesiek et al. [14] proposed a 3D

1Source code is available on https://github.com/rezazad68/BCDU-Net.

CNN for brain lesion segmentation. To process MRI data,

the network consists of four channels: non-enhanced and

contrast-enhanced T1w, T2w and FLAIR contrasts. Roth

et al. [22] proposed a multi-level deep convolutional net-

works for pancreas segmentation in abdominal CT scans as

a probabilistic bottom-up approach.

2.2. Fully Convolutional Network (FCN)

One of the main problems of the CNN models for seg-

mentation tasks is that the spatial information of the image

is lost when the convolutional features are fed into the fc

layers. To overcome this problem the fully convolutional

network (FCN) was proposed by Long et al. [17]. This net-

work is trained end-to-end and pixels-to-pixels for semantic

segmentation. All fc layers of the CNN architecture are re-

placed with convolutional and deconvolutional ones to keep

the original spatial resolutions. Therefore, the original spa-

tial dimension of the features maps are recovered while the

network is performing the segmentation task. FCN has been

frequently utilized for segmentation of medical and biomed-

ical images [27, 28]. Zhou et al. [27] exploited FCN for seg-

mentation of anatomical structures on 3D CT images. An

FCN with convolution and de-convolution parts is trained

end-to-end, performing voxel-wise multiple-class classifi-

cation to map each voxel in a CT image to an anatomical

label. Drozdzal et al. [11] proposed very deep FCN by

using short skip connections. The authors showed that a

very deep FCN with both long and short skip connections

achieved better result than the original one.

U-Net, proposed by Ronneberger et al. [21], is one of

the most popular FCNs for medical image segmentation.

This network consists of contracting and expanding paths.

U-Net has some advantages than the other segmentation-

based network [2]. It works well with few training samples

and the network is able to utilize the global location and

context information at the same time. Milletari et al. [18]

proposed V-Net, a 3D extension version of U-Net to predict

segmentation of a given volume at once. In that network,

the authors proposed an end-to-end 3D image segmentation

network based on a volumetric (MRI volumes), fully con-

volutional, neural network. 3D U-Net [7] is proposed for

processing 3D volumes instead of 2D images as input. In

which, all 2D operations of U-Net are replaced with their

3D counterparts. VoxResNet [5], a deep voxel-wise residual

network, was proposed for brain segmentation from MR.

This 3D network is inspired by deep residual learning, per-

forming summation of feature maps from different layers.

2.3. Recurrent Neural Network (RNN)

Pinheiro et al. [20] proposed an end-to-end feed forward

deep network consisting of an RNN that can take into ac-

count long range label dependencies in the scenes while

limiting the capacity of the model. Visin et al. [25] pro-



posed ReSeg for semantic segmentation. In that network,

the input images are processed with a pre-trained VGG-16

model and its resulting feature maps are then fed into one

or more ReNet layers. DeepLab architecture [6] contains a

deep convolutional neural network in which all fully con-

nected layers are replaced by convolutional layers and then

the feature resolution is increased through atrous convolu-

tional layers. Alom et al. [2] proposed Recurrent Convo-

lutional Neural Network (RCNN) and Recurrent Residual

Convolutional Neural Network (R2CNN) based on U-Net

models for medical image segmentation. Bai et al. [4] com-

bined an FCN with an RNN for medical image sequence

segmentation, which is able to incorporate both spatial and

temporal information for MR images.

In this paper, BCDU-Net is proposed as an extension of

U-Net, showing better performance than state-of-the-art al-

ternatives for the segmentation task. Moreover, BN has a

significant effect on the convergence speed of the network.

3. Proposed Method

Inspired by U-Net [21], BConvLSTM [23], and dense

convolutions [12], we propose the BCDU-Net as shown in

Figure 1. The network utilizes the strengths of both BCon-

vLSTM states and densely connected convolutions. We de-

tail different parts of the network in the next sub sections.

3.1. Encoding Path

The contracting path of BCDU-Net includes four steps.

Each step consists of two convolutional 3×3 filters followed

by a 2× 2 max pooling function and ReLU. The number of

feature maps are doubled at each step. The contracting path

extracts progressively image representations and increases

the dimension of these representations layer by layer. Ulti-

mately, the final layer in the encoding path produces a high

dimensional image representation with high semantic infor-

mation. The original U-Net contains a sequence of con-

volutional layers in the last step of encoding path. Hav-

ing a sequence of convolutional layers in a network yields

the method learn different kinds of features. Nevertheless,

the network might learn redundant features in the succes-

sive convolutions. To mitigate this problem, densely con-

nected convolutions are proposed [12]. This helps the net-

work to improve its performance by the idea of “collective

knowledge” in which the feature maps are reused through

the network. It means feature maps learned from all previ-

ous convolutional layers are concatenated with the feature

map learned from the current layer and then are forwarded

to use as the input to the next convolution.

The idea of densely connected convolutions has some

advantages over the regular convolutions [12]. First of all,

it helps the network to learn a diverse set of feature maps

instead of redundant features. Moreover, this idea improves

the network’s representational power by allowing informa-

tion flow through the network and reusing features. Fur-

thermore, dense connected convolutions can benefit from

all the produced features before it, which prompt the net-

work to avoid the risk of exploding or vanishing gradi-

ents. In addition, the gradients are sent to their respective

places in the network more quickly in the backward path.

We employ the idea of densely connected convolutions in

the proposed network. To do that, we introduce one block

as two consecutive convolutions. There are a sequence of

N blocks in the last convolutional layer of the encoding

path, shown in Figure 2. These blocks are densely con-

nected. We consider X i
e as the output of the ith convolu-

tional block. The input of the ith (i ∈ {1, ..., N}) con-

volutional block receives the concatenation of the feature

maps of all preceding convolutional blocks as its input, i.e.,[
X 1

e ,X
2
e , ...,X

i−1
e

]
∈ R

(i−1)Fl×Wl×Hl , and the output of

the ith block is X i
e ∈ R

Fl×Wl×Hl . In the remaining part of

the paper we use simply Xe instead of XN
e .

3.2. Decoding Path

Each step in the decoding path starts with performing an

up-sampling function over the output of the previous layer.

In the standard U-Net, the corresponding feature maps in

the contracting path are cropped and copied to the decod-

ing path. These feature maps are then concatenated with

the output of the up-sampling function. In BCDU-Net, we

employ BConvLSTM to process these two kinds of feature

maps in a more complex way. Let Xe ∈ R
Fl×Wl×Hl be

the set of feature maps copied from the encoding part, and

Xd ∈ R
Fl+1×Wl+1×Hl+1 be the the set of feature maps from

the previous convolutional layer, where Fl is number of fea-

ture maps at layer l, and Wl ×Hl is the size of each feature

map at layer l. It is worth mentioning that Fl+1 = 2 ∗ Fl,

Wl+1 = 1
2 ∗ Wl, and Hl+1 = 1

2 ∗ Hl. Based on Fig-

ure 3, Xd is first passed to an up-convolutional layer in

which an up-sampling function followed by a 2 × 2 con-

volution are applied, doubling the size of each feature map

and halving the number of feature channels, i.e., producing

X up
d ∈ R

Fl×Wl×Hl . In other words, the expanding path in-

creases the size of the feature maps layer by layer to reach

the original size of the input image after the final layer.

3.2.1 Batch Normalization:

After up-sampling, X up
d goes through a BN function and

produces X̂ up
d . A problem in the intermediate layers in

training step is that the distribution of the activations varies.

This problem makes the training process very slow since

each layer in every training step has to learn to adapt them-

selves to a new distribution. BN [13] is utilized to increase

the stability of a neural network, which standardizes the in-

puts to a layer in the network by subtracting the batch mean

and dividing by the batch standard deviation. BN affect-



Figure 1. BCDU-Net with bi-directional ConvLSTM in the skip connections and densely connected convolution.

Figure 2. Dense layer of the BCDU-Net.

edly accelerates the speed of training process of a neural

network. Moreover, in some cases the performance of the

model is improved thanks to the modest regularization ef-

fect. More details can be found in [13].

3.2.2 Bi-Directional ConvLSTM:

The output of the BN step (X̂ up
d ∈ R

Fl×Wl×Hl ) is now

fed to a BConvLSTM layer. The main disadvantage of

the standard LSTM is that these networks does not take

into account the spatial correlation since these models use

full connections in input-to-state and state-to-state transi-

tions. To solve this problem, ConvLSTM [26] was proposed

which exploited convolution operations into input-to-state

and state-to-state transitions. It consists of an input gate

it, an output gate ot, a forget gate ft, and a memory cell

Ct. Input, output and forget gates act as controlling gates

to access, update, and clear memory cell. ConvLSTM can

be formulated as follows (for convenience we remove the

subscript and superscript from the parameters):

it = σ (Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ∗ Ct−1 + bi)

ft = σ (Wxf ∗ Xt + Whf ∗ Ht−1 + Wcf ∗ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it tanh (Wxc ∗ Xt + Whc ∗ Ht−1 + bc)

ot = σ (Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bc)

Ht = ot ◦ tanh(Ct),
(1)

Figure 3. Bi-directional ConvLSTM in CUA-Net.

where ∗ and ◦ denote the convolution and Hadamard func-

tions, respectively. Xt is the input tensor (in our case Xe

and X̂ up
d ), Ht is the hidden sate tensor, Ct is the memory

cell tensor, and, Wx∗ and Wh∗ are 2D Convolution kernels

corresponding to the input and hidden state, respectively,

and bi, bf , bo, and bc are the bias terms.

In this network, we employ BConvLSTM [23] to encode

Xe and X̂ up
d . BConvLSTM uses two ConvLSTMs to pro-

cess the input data into two directions of forward and back-

ward paths, and then makes a decision for the current input

by dealing with the data dependencies in both directions. In

a standard ConvLSTM, only the dependencies of the for-



ward direction are processed. However, all the information

in a sequence should be fully considered, therefore, it might

be effective to take into account backward dependencies. It

has been proved that analyzing both forward and backward

temporal perspectives enhanced the predictive performance

[9]. Each of the forward and backward ConvLSTM can be

considered as a standard one. Therefore, we have two sets

of parameters for backward and forward states. The output

of the BConvLSTM is calculated as

Yt = tanh
(

W
−→
H

y ∗
−→
Ht + W

←−
H

y

←−
Ht + b

)
(2)

where
−→
Ht and

←−
Ht denote the hidden sate tensors for for-

ward and backward states, respectively, b is the bias term,

and Yt ∈ R
Fl×Wl×Hl indicates the final output considering

bidirectional spatio-temporal information. Moreover, tanh
is the hyperbolic tangent which is utilized here to combine

the output of both forward and backward states through a

non-linear way. We utilize the energy function like the orig-

inal U-Net to train the network.

4. Experimental Results

We evaluate BCDU-Net on DRIVE, ISIC 2018, and a

lung segmentation public benchmark datasets. DRIVE is a

dataset for blood vessel segmentation from retina images,

ISIC is for skin cancer lesion segmentation, and the last

dataset consists of diagnostic and lung cancer screening

thoracic computed tomography (CT) scans with marked-

up annotated lesions. The empirical results show that

the proposed method outperforms state-of-the-art alterna-

tives. Keras with TenserFlow backend is utilized for this

implementation. The network is trained from scratch for

all datasets. We consider several performance metrics to

perform the experimental comparative, including accuracy

(AC), sensitivity (SE), specificity (SP), F1-Score, Jaccard

similarity (JS), and area under the curve (AUC). We stop

the training of the network when the validation loss remains

the same in 10 consecutive epochs which is 50, 100, and 25

for DRIVE, ISIC, and Lung datasets, respectively.

4.1. DRIVE Dataset

DRIVE [24] is a dataset for blood vessel segmentation

from retina images. It includes 40 color retina images, from

which 20 samples are used for training and the remain-

ing 20 samples for testing. The original size of images is

565 × 584 pixels. It is clear that a dataset with this num-

ber of samples is not sufficient for training a deep neural

network. Therefore, we use the same strategy as [2] for

training our network. The input images are first randomly

divided into a number of patches. In total, around 190, 000
patches are produced from 20 training images, from which

171, 000 patches are used for training, and the remaining

Figure 4. Segmentation result of BCDU-Net on DRIVE.

19, 000 patches are used for validation. The size of batches

utilized as the input data to the network is 64× 64.

Some precise and promising segmentation results of the

experimental output of the proposed network are shown in

Figure 9. The first column is the original color image, the

second one is the ground truth mask and the third column

is the output of the proposed BCDU-Net. Table 1 lists the

quantitative results obtained by different methods and the

proposed network on DRIVE dataset. We evaluate the net-

work with d = 1 and d = 3 as the number of dense blocks

in the network. With d = 1 we have one convolutional

block without any dense connection in that layer, i.e., like

the last encoding layer of the standard U-Net. With d = 3
we have three convolutional blocks and two dense connec-

tions in that layer. It is shown that the BCDU-Net (with both

d = 1 and d = 3) outperforms w.r.t. the state-of-the-art al-

ternatives for most of the evaluation metrics. Moreover, it

can be seen that the network with d = 3 works better than

the network without dense block.

To ensure the proper convergence of the proposed net-

work, the training and validation accuracy for DRIVE

dataset is shown in Figure 5 (a). It is shown that the network

converges very fast, i.e., after the 30th epoch, the network is

almost converged. We also can see that in the first 15 epochs

the validation accuracy is larger than the training one. This

fact is mostly because of the small size of dataset since we

use a small set of images as the validation set. Moreover, it

might be related to the fact that we evaluate the validation

set at the end of epoch. To show the overall performance of

the BCDU-Net on DRIVE dataset, ROC curves is shown in

Figure 6 (a). ROC is the plot of the true positive rate (TPR)

against the false positive rate (FPR). AUC (reported in Ta-

ble 1) is the area under the ROC curve and is a measure of

how well the network can segment the input data.

4.2. ISIC 2018 Dataset

The ISIC dataset [8] was published by the International

Skin Imaging Collaboration (ISIC) as a large-scale dataset

of dermoscopy images. This dataset is taken from a chal-

lenge on lesion segmentation, dermoscopic feature detec-

tion, and disease classification. It includes 2594 images



Table 1. Performance comparison of the proposed network and the state-of-the-art methods on DRIVE dataset.

Methods F1-Score Sensitivity Specificity Accuracy AUC

COSFIRE filters [3] - 0.7655 0.97048 0.9442 0.9614

Cross-Modality [15] - 0.7569 0.9816 0.9527 0.9738

U-net [21] 0.8142 0.7537 0.9820 0.9531 0.9755

Deep Model [16] - 0.7763 0.9768 0.9495 0.9720

RU-net [2] 0.8149 0.7726 0.9820 0.9553 0.9779

R2U-Net [2] 0.8171 0.7792 0.9813 0.9556 0.9782

BCDU-Net (d=1) 0.8222 0.8012 0.9784 0.9559 0.9788

BCDU-Net (d=3) 0.8224 0.8007 0.9786 0.9560 0.9789

(a) DRIVE, (b) ISIC, (c) Lung Segmentation,
Figure 5. Training and validation accuracy of BCDU-Net for three datasets.

where like previous approaches[2], we used 1815 images

for training, 259 for validation and 520 for testing. The

original size of each sample is 700× 900. We use the same

pre-processing as [2] on the input image, and resize images

to 256× 256. The training data consists of the original im-

ages and corresponding ground truth annotations (i.e., bi-

nary images containing cancer or non-cancer lesions).

For qualitative analysis, Figure 7 shows some promis-

ing example outputs of the proposed BCDU-Net on ISIC

dataset. Table 2 lists the quantitative results obtained by dif-

ferent methods and the proposed network on ISIC dataset.

A large improvement is achieved by the BCDU-Net (with

both d = 1 and d = 3 ) w.r.t. state-of-the-art alternatives

for all of the evaluation metrics. It is clear that the network

with d = 3 works better than the one with d = 1. It is worth

mentioning that there was a challenge on ISIC dataset and

the best result achieved by the participants was JS = 0.802.

Compare to this result, there is a good gap between the JS

achieved by the BCDU-Net (0.936) and the best result of

the ISIC challenge.

The training and validation accuracy of the proposed

network for ISIC dataset is shown in Figure 5 (b). Like

DRIVE dataset, the convergence speed of the network for

ISIC dataset is fast (after 40 epochs). The validation accu-

racy over the training process is variable. The reason be-

hind this fact is that the validation set contains some images

totally different from the ones in training set, therefore, dur-

ing the first learning iterations the model has some problems

about segmenting those images. To show the overall perfor-

mance of the BCDU-Net on ISIC dataset, the ROC curves

are shown in Figure 6 (b).

4.3. Lung Segmentation Dataset

A lung segmentation dataset is introduced in the Lung

Nodule Analysis (LUNA) competition at the Kaggle Data

Science Bowl in 2017. This dataset consists of 2D and 3D

CT images with respective label images for lung segmen-

tation [1]. We use 70% of the data as the train set and the

remaining 30% as the test set. The size of each image is

512× 512. Since the lung region in CT images have almost

the same Hausdorff value with non-object of interests such

as bone and air, it is worth to learn lung region by learning

its surrounding tissues. To do that first we extract the sur-

rounding region by applying algorithm 1 and then make a

new mask for the training sets. We train the model on these

new masks and on the testing phase,and estimate the lung

region as a region inside the estimated surrounding tissues.

A sample is shown in Figure 8 .

Algorithm 1 Pre-processing over lung dataset.

1: Input = X and GT Mask

2: Output = Surrounding Mask

3: X(X > 512) = 512
X(X < −512) = −512 ⊲ Remove bones and vessels

4: X = Norm(X) ⊲ Normalize X

5: X = image2binary(X) ⊲ Convert to binary

6: X = X ∪GT Mask

7: X = Morphology(X) ⊲ Remove noise

8: Surrounding Mask = X −GT Mask

Figure 9 shows some segmentation outputs of the pro-

posed network for lung dataset. The quantitative results of

the proposed BCDU-Net is compared with other methods

in Table 3. It is clear that the BCDU-Net (with both d = 1
and d = 3) outperforms the other methods. Moreover, the



Table 2. Performance comparison of the proposed network and the state-of-the-art methods on ISIC dataset.

Methods F1-Score Sensitivity Specificity Accuracy PC JS

U-net [21] 0.647 0.708 0.964 0.890 0.779 0.549

Attention U-net [19] 0.665 0.717 0.967 0.897 0.787 0.566

R2U-net [2] 0.679 0.792 0.928 0.880 0.741 0.581

Attention R2U-Net [2] 0.691 0.726 0.971 0.904 0.822 0.592

BCDU-Net (d=1) 0.847 0.783 0.980 0.936 0.922 0.936

BCDU-Net (d=3) 0.851 0.785 0.982 0.937 0.928 0.937

(a) DRIVE, (b) ISIC, (c) Lung Segmentation,
Figure 6. ROC diagrams of the proposed BCDU-Net for three dataset.

Figure 7. Segmentation result of BCDU-Net on ISIC.

Figure 8. A sample of generated mask for Lung dataset.

Figure 9. Segmentation result of BCDU-Net on Lung dataset.

network with dense connections works better. The training

and validation accuracy for this dataset is shown in Figure 5

(c). To show the overall performance of the network on this

dataset, ROC curves is shown in Figure 6 (c).

4.4. Discussion

The proposed network has some modifications from the

original U-Net. We summarized the ”Accuracy” and ”F1-

Score” of the original U-Net and its modifications for three

utilized datasets in Table 4. We evaluate each modified part

of the network to analyze its influence on the result. In Ta-

ble 4, it can be seen that the result of the standard U-Net

is improved by inserting BConvLSTM in the skip connec-

tions. Figure 10 shows the output segmentation mask of

the original U-Net and BCDU-Net for two samples of the

ISIC dataset. It shows a more precise and fine segmentation

output of the proposed network than the original U-Net. Af-

ter the skip connections, there are two kinds of features to

combine, i.e., the features from the previous decoding layer

and the features from the corresponding encoding layer. For

convenience, we call them the encoded and decoded fea-

tures. In the original U-Net, a simple concatenation func-

tion is used to combine these two kinds of features.

In the proposed network, we used a set of BConvLSTMs

to combine encoded and decoded features. The encoded

features have higher resolution and therefore contain more

local information of the input image, while the decoded fea-

tures have more semantic information about the input im-

ages. The affection of these two features over each other

might result in a set of feature maps rich in both local and

semantic information. Therefore, instead of a simple con-

catenation, we utilize BConvLSTM to combine the encoded

and decoded features. In BConvLSTM, a set of convolu-

tion filters are applied on each kind of features. Therefore

each ConvLSTM state, corresponds to one kind of features

(e.g. encoded features), ia able to encode relevant informa-

tion about the other kind of features (e.g. decoded features).

The convolutional filters along with the hyperbolic tangent

functions help the network to learn complex data structures.



Table 3. Performance comparison of the proposed network and the state-of-the-art methods on Lung dataset.

Methods F1-Score Sensitivity Specificity Accuracy AUC JS

U-net [21] 0.9658 0.9696 0.9872 0.9872 0.9784 0.9858

RU-net [2] 0.9638 0.9734 0.9866 0.9836 0.9800 0.9836

R2U-Net [2] 0.9832 0.9944 0.9832 0.9918 0.9889 0.9918

BCDU-Net (d=1) 0.9889 0.9901 0.9979 0.9967 0.9940 0.9967

BCDU-Net (d=3) 0.9904 0.9910 0.9982 0.9972 0.9946 0.9972

Table 4. Performance comparison of U-Net and its modifications in our work.

Methods
DRIVE ISIC Lung

F1-Score AC F1-Score AC F1-Score AC

U-net 0.8142 0.9531 0.6470 0.8900 0.9658 0.9828

U-Net + BConvLSTM (d=1) 0.8222 0.9559 0.8470 0.9360 0.9889 0.9967

U-Net + BConvLSTM + Dense Conv (d=3) 0.8243 0.9560 0.8506 0.9374 0.9904 0.9972

Figure 10. Visual effect of BConvLSTM in BCDU-Net.

We included BN after each up-convolutional layer to

speed up the network learning process. To evaluate the ef-

fect of this function, we train the network with and without

BN. Figure 11 (a) shows the training and validation accu-

racy of BCDU-Net for ISIC dataset without BN and Figure

11 (b) shows the same contend for the network with BN.

BCDU-Net converged after 200 epochs without BN while

this number is about 30 with BN, i.e., BN yields the net-

work to converge 6.6 times faster. Moreover, it can be seen

that BN has improved the accuracy of the BCDU-Net. The

variations among data in the ISIC dataset is larger than the

other datasets. BN manages these variations by standardiz-

ing data through controlling the mean and variance of dis-

tributions of inputs which results in a small regularization

and reducing generalization error. Therefore, BN helps the

network to improve the performance.

(a) (b)
Figure 11. Training and validation accuracy of BCDU-Net (a)

without and (b) with BN.

Table 4 shows that the network with dense connections

improve the accuracy and F1-Score for the three datasets.

The key idea of dense convolutions is sharing feature maps

between blocks through direct connection between convo-

lutional block. Consequently, each dense block receives all

preceding layers as input, and therefore, produces more di-

versified and richer features. Thus, it helps the network to

increase the representational power of deeper models.

We have more feature propagation both in backward and

forward paths through dense blocks. The network performs

a kind of deep supervision in backward path since dense

block receives additional supervision from loss function

through shorter connections [12]. The error signal is prop-

agated to earlier layers more directly, hence, earlier layers

can get direct supervision from the final softmax layer, and

moreover, it results in decreasing the vanishing-gradient

problem. In addition, compared to other deep architectures

like residual connections, dense convolutions require fewer

parameters while improving the accuracy of the network.

5. Conclusion

We proposed BCDU-Net for medical image segmenta-

tion. We showed that by including BConvLSTM in the skip

connection and also inserting a densely connected convo-

lutional blocks, the network is able to capture more dis-

criminative information which resulted in more precise seg-

mentation results. Moreover, we were able to speed up

the network about six times by utilizing BN after the up-

convolutional layer. The experimental results on three pub-

lic benchmark datasets showed high gain in semantic seg-

mentation in relation to state-of-the-art alternatives.
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