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Abstract

The cost of drawing object bounding boxes (i.e. label-

ing) for millions of images is prohibitively high. For in-

stance, labeling pedestrians in a regular urban image could

take 35 seconds on average. Active learning aims to reduce

the cost of labeling by selecting only those images that are

informative to improve the detection network accuracy. In

this paper, we propose a method to perform active learning

of object detectors based on convolutional neural networks.

We propose a new image-level scoring process to rank un-

labeled images for their automatic selection, which clearly

outperforms classical scores. The proposed method can be

applied to videos and sets of still images. In the former

case, temporal selection rules can complement our scoring

process. As a relevant use case, we extensively study the

performance of our method on the task of pedestrian de-

tection. Overall, the experiments show that the proposed

method performs better than random selection.

1. Introduction

Having comprehensive and diverse datasets is essential

for training accurate neural networks, which becomes criti-

cal in problems such as object detection since the visual ap-

pearance of objects and background vary considerably. The

usual approach to create such datasets consists of collecting

as many images as possible and drawing bounding boxes

(labeling) for all objects of interest in all images. However,

this approach has two major drawbacks.

While labeling small datasets is tractable, it becomes

extremely costly when the dataset is large. For instance,

according to our experiments with six labeling tools (La-

belMe, VoTT, AlpsLabel, LabelImg, BoundingBox Anno-

tation, Fast Annotation), on average, a human (i.e. the ora-

cle) takes a minimum of 35 seconds for labeling pedestri-

ans of a typical urban road scene; the time can be longer

depending on the tool and oracle’s labeling experience. In a

dataset where hundred-thousands of images contain pedes-

trians, the total labeling time could be prohibitively high.

One way to deal with this problem is to select a random

subset for labeling. Unless the selected random subset is

large, this does not guarantee that it will capture diverse

visual patterns. As a result, the accuracy of the network

trained on the random subset might be significantly lower

than training on the full dataset.

Instead of selecting the subset randomly, active learning

[22] aims to select samples which are able to improve the

knowledge of the network. To this end, an active learning

method employs the current knowledge of the network to

select informative samples for labeling. The general hy-

pothesis is that the network trained on the subset selected

by active learning will be more accurate than training on a

random subset of the same number of samples. This way,

not only the labeling cost is reduced by selecting a smaller

subset for labeling but also it guarantees that the network

will be sufficiently accurate by training on this subset.

As we will see in Section 2, most work in active learning

has focused on image classification. However, in general,

the labeling cost is considerably higher for a detection task

compared to a classification task. In this paper, we propose

a method to perform active learning on detection tasks.

Problem formulation: We use the set of images Xl, la-

beled with object bounding boxes, to train an object detec-

tor, Θ, based on a convolutional neural network. Afterward,

we receive an unlabeled set of still images or videos Xu.

The goal is to improve the accuracy of Θ by labeling a small

subset of Xu. Xl and Xu may be from the same distribution,

or there may exist a domain shift [19] between them, being

the Xu from the domain in which Θ must perform well. In

either cases, active learning aims at automatically select-

ing a subset Xal ⊂ Xu such that finetuning Θ on Xal pro-

duces more accurate results than finetuning on a randomly

selected subset Xrnd ⊂ Xu; where |Xal| = |Xrnd| = B and

both, Xal and Xrnd, are labeled by an oracle (e.g. human)

before finetuning. We term B as total labeling budget1.

Contribution: In this paper, we propose a new method

to perform active learning on deep detection neural net-

works (Section 3). In particular, given such an object

detector, our method examines a set of unlabeled images

1There are other ways to define the labeling budget. In this paper, we

use “image-centric” definition for simplicity.
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Figure 1. Our method for active learning of object detectors. We start with a detector trained on a labeled dataset. Then, active learning

cycles are repeated according to a preset budget. Each cycle starts by computing dense object prediction probabilities for each remaining

unlabeled image. This is followed by computing pixel-level scores and aggregating them into a frame-level score. These scores are used to

automatically select images for human labeling. Finally, the original detector is finetuned using the accumulated actively-labeled images.

to select those with more potential to increase the detec-

tion accuracy. These images are labeled and then utilized

for retraining the detector. With this aim, given an im-

age, we propose a new function to score the importance

of each pixel for improving the detector. Proper aggrega-

tion of such pixel-level scores allows to obtain an image-

level score. By ranking these scores, we can decide what

images to select for labeling. This procedure can be per-

formed in several iterations. Our method can be applied

on both datasets of still images and videos. As a relevant

use case, in Section 4, we carry out experiments on the

task of pedestrian detection. In addition, we perform a de-

tailed analysis to show the effectiveness of our proposed

method compared to random selection and the use of other

classical methods for image-level scoring. Moreover, in

the case of videos, we show how our method can be eas-

ily complemented by selection rules that take into account

temporal correlations. Our codes are publicly available at

www.gitlab.com/haghdam/deep_active_learning .

We draw our conclusion and future work in Section 5.

2. Related Work

Most works on active learning focus on image classifi-

cation. Gal et al. [7, 6, 15] add a prior on the weights of

image classification neural networks, sampling the weights

from the dropout distribution at each evaluation. Then, the

informativeness score of an unlabeled image is obtained by

computing the mutual information or the variation ratio of

predictions. Images are ranked according to these scores

and the top B are selected for labeling. The main draw-

back of these methods is not considering the similarity of

selected samples. Therefore, they might select redundant

samples for labeling. Elhamifar et al. [5] formulated the

selection as a convex optimization problem taking into ac-

count the similarity of selected samples in the feature space

as well as their informativeness score. In addition, Rohan

et al. [18] introduced the concept of coresets to achieve this

goal. Recently, Sener and Savarese [21] cast the coreset

finding problem as a k-center problem. A similar approach

was utilized in [9] to do active learning over the long tail.

Active learning was used by Lakshminarayanan et

al. [14] and Gal et al. [8] for regression tasks, by Von-

drick and Ramanan [26] to select keyframes for labeling

full videos with action classes, and by Heilbron et al. [10]

for action localization. There were different works on active

learning for object detection based on hand-crafted features

and shallow classifiers [1, 24]. However, to the best of our

knowledge, there are only a few works on active learning for

object detection based on convolution neural networks. Kao

et al. [13] rank images using the localization tightness and

stability. The former measures how tight detected bound-

ing boxes are, and the later estimates how stable they are in

the original image and a noisy version of it. Roy et al. [20]

proposed black-box and white-box methods. Whereas the

black-box methods do not depend on the underlying net-

work architecture, white-box methods are defined based on

the network architecture. Furthermore, Brust et al. [2] com-

puted the marginal score [23] of candidate bounding boxes

and integrate them using different merging functions.

There are major differences between our method and

these works on active learning for deep learning based ob-

ject detection. First, they incorporate commonly used score

functions such as the marginal and entropy scores. In con-

trast, we propose a new function to compute the pixel-level

score which is well suited for the task of object detec-

tion. Second, they mainly rely on simple merging functions

such as average or maximum of pixel-level scores to obtain

image-level scores. However, we propose another method

for aggregating pixel-level scores and show its importance

in our experiments. Third, when working with videos, we

show how our method is well complemented with rules to

avoid the selection of representative but redundant frames.

3. Proposed Method

Given an image X, x1 = Xm1:m2,n1:n2
denotes a patch

of it and x2 = Xm1±ǫ:m2±ǫ,n1±ǫ:n2±ǫ is another patch ob-

tained by translating x1 for ǫ pixels. We hypothesize that a

detection network is likely to predict similar probability dis-

tributions for x1 and x2 if the appearance of these patches

have been adequately seen by the network during training.

Otherwise, the posterior probability distributions of x1 and

x2 would diverge. Denoting the divergence between the
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posterior probabilities of x1 and x2 by D(Θ(x1)||Θ(x2))
where Θ() is the softmax output of the detection network,

we assume that D will be small for true-positive and true-

negative predictions; while it will be high for false-positive

and false-negative predictions. Thus, since our aim is to

reduce the number of false-positive and false-negative pre-

dictions, we propose the active learning method illustrated

in Figure 1 to select informative images for labeling.

Initially, we assume that a labeled dataset Xl is used to

train a network Θ, giving raise to the vector of weights

wl. Active learning will start with an empty set of images

Xal = ∅ and a set of N unlabeled images called Xu. Then,

active learning will proceed in cycles, where automatically

selected images from Xu are moved to Xal after labeling.

Calling b the labeling budget per cycle, and being B the

already introduced total budget for labeling, both expressed

as number of images, we run K = B
b

active learning cycles.

Note that an underlying assumption is B ≪ N .

An active learning cycle starts from Step 1 where the cur-

rent unlabeled set Xu is processed to assign a prediction (de-

tection) probability for each pixel of its images. Actually,

it can be more than one prediction probability per-pixel for

multi-resolution detection networks, which is the case we

consider here; we can think in terms of matrices of predic-

tion probabilities. In the first active learning cycle, the de-

tection network is uniquely based on wl. In the next cycles,

these weights are modified by retraining on the accumulated

set Xal of actively labeled images. Then, in Step 2, we

jointly consider the spatial neighbourhood and prediction

matrices to obtain a per-pixel score roughly indicating how

informative may each pixel be for improving the detection

network. Since we have to select full images, pixel-level

scores must be converted into image-level scores. There-

fore, Step 3 computes an image-level scalar score for each

image xu ∈ Xu by aggregating its pixel-level scores. Step

4 employs the image-level scores to select the b best ranked

images from Xu for their labeling. Denoting the set of se-

lected b images by Xs, Step 5 sets Xal to Xal ∪ Xs and Xu

to Xu −Xs. Finally, an active learning cycle ends in Step 6

after retraining Θ using Xal and wl as initialization weights.

Next, we explain the details of each step in our proposed

method. Without loss of generality with respect to the active

learning protocol, we focus on a problem which is of special

relevance for us, namely pedestrian detection. We design

our network and other stages of the proposed active learn-

ing method for the task of pedestrian detection, but they are

extendable to multiclass detection problems.

Network architecture: The first step in the active learn-

ing cycle computes pixel-level scores for the image. Hence,

the detection network Θ must be able to compute the poste-

rior probability for each pixel. Lin et al. [16] proposed Fea-

ture Pyramid Networks (FPNs) with lateral connections for

object detection. We utilize a similar paradigm in design-

Figure 2. Overall architecture of the detection network.

ing our detection network. Nonetheless, instead of using a

heavy backbone network, we designed the network shown

in Figure 2 with predictions at different levels of the de-

coder. Because our method requires pixel-level scores, the

prediction layer must have the same size as the image. To

this end, we follow [3] and resize the logits spatially using

the bilinear upsampling.

Each Fire Residual module follows the same architec-

ture indicated in [12]. Also, each downsampling layer is

composed of convolution and pooling layers which are ap-

plied in parallel and concatenated at the output [17]. All

prediction layers share the same weights. For this reason,

there is a 1 × 1 convolution layer with 128 filters before

each logits layer to unify the depth of feature maps. In-

terested readers can find the detail of the architecture in

www.gitlab.com/haghdam/deep_active_learning .

We design the network such that the prediction blocks

{Θ1,Θ2,Θ3,Θ4,Θ5} cover bounding boxes of size {270×
160, 225 × 130, 145 × 80, 80 × 50, 55 × 31} respectively.

Here, Θ1 indicates the prediction block connected to the last

layer of the encoder and Θ5 shows the prediction block at

the end of the decoder.

In this paper, we have mainly focused on the task of

pedestrian detection which is a binary classification prob-

lem. Thus, the depth of each logits layer is one. Also,

each of them connects to a logistic loss. We do not use

any bounding box regression branch in our network.

Pixel-level scores: Our goal is to select images for la-

beling with the highest number of false-positive and false-

negative predictions. Earlier, we hypothesized that the

divergence between predicted probability distributions in

the neighborhood of false-positive and false-negative pixels

should be high. As the result, by computing the divergence

of predictions locally we will be able to approximate the

degree to which the prediction of a pixel is incorrect.

For an image of size W×H , the output Θi, i = 1 . . .KΘ

will be a W × H matrix of probability values, where KΘ

is the total number of prediction branches (matrices). For

example, the element (i, j) from Θ3 in our network shows

how probable is that the pixel coordinate (i, j) corresponds

to a pedestrian that fits properly with a 145 × 80 bounding

box. Given the five probability matrices, our goal is to com-

pute the score matrix S = [sij ]W×H such that sij shows
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Figure 3. Aggregating pixel-level scores to an image-level score.

how divergent are the predictions from each other in a local

neighborhood centered at the coordinate (i, j).
Denoting the element (i, j) of the kth probability matrix

Θk with pkij , the first step in obtaining the score of pixel

(m,n) is to compute the expected probability distribution

spatially as follows:

p̂kmn =
1

(2r + 1)2

m+r∑

i=m−r

n+r∑

j=n−r

pkij . (1)

In this equation, r denotes the radius of neighborhood.

Next, the score of element (m,n) for the kth probability

matrix is obtained by computing

skmn = H(p̂kmn)−
1

(2r + 1)2

m+r∑

i=m−r

n+r∑

j=n−r

H(pkij) (2)

where H is the entropy function. This score has been pre-

viously used by [11] and [8] in the task of image classifica-

tion. In the case of binary classification problem, H(z) is

defined as follows:

H(z) = −z log z − (1− z) log(1− z). (3)

The final score for the element (m,n) is obtained by sum-

ming the same element in all probability matrices.

smn =
∑

k=1..KΘ

skmn. (4)

Basically, the score skmn is obtained by computing the dif-

ference between the entropy of mean predictions and the

mean entropy of predictions. As it turns out, skmn will be

close to zero if the predictions are locally similar at this lo-

cation. In contrary, skmn will be high if predictions deviate

locally. Finally, smn will be small if predictions are locally

consistent in all probability matrices.

Aggregating scores: We need to rank unlabeled images

based on their informativeness to select some of them in the

next step. However, it is not trivial to compare two images

purely using their score matrices and decide which one may

provide more advantageous information to the network.

A straightforward solution is to aggregate pixel-level

scores in the score matrix S to a single number. To this end,

we divide the score matrix S into non-overlapping regions.

This is illustrated in Figure 3. Then, the maximum score of

each region is computed. Denoting the maximum score of

the ith region with simax, we compute the image-level score

z as the average of max-pooled scores:

z =
1

Dp

∑

i

simax , (5)

where Dp is the total number of max-pooled regions.

Selecting images: As indicated in Figure 1, the image-

level score is computed for every sample in the unlabeled

dataset Xu. The next step is to select b samples from Xu.

Here, we consider two scenarios. In the first scenario, Xu is

composed of still images meaning that there is no temporal

dependency between two consecutive samples. In the sec-

ond scenario, Xu contains samples that are ordered chrono-

logically. In other words, Xu contains video sequences.

In the first scenario, top b samples with the highest

image-level scores are picked from Xu. The same approach

could be used for the second scenario. However, redundant

samples might be selected in the second scenario if we do

not incorporate temporal reasoning in the selection process.

Assume that the tth frame in the video from Xu has the

highest image-level score. It is likely that the t+△t frame

has an image-level score comparable to the tth frame, be-

cause it is highly probable that two (or more) consecutive

frames contain similar visual patterns. Then, if the frames

are selected without taking into account the temporal dis-

tance, this step might select many frames running on t±△t

since they all may have high image-level scores. Nonethe-

less, only one of these frames may suffice to improve the

knowledge of the network. For this reason, we add more

steps for the second scenario. Specifically, we perform tem-

poral smoothing of the image-level scores as follows:

ẑt =
1∑
i wi

t+△t∑

i=t−△t

wi+△tzi. (6)

In this equation, zi denotes the image-level score of the ith

frame, and wi+△t shows the importance of the image-level

score within a temporal window of size 2△t. In this paper,

we use the Gaussian weights but other weighting functions

might be also explored. Next, the top b frames with the

highest ẑ are selected from Xu one by one taking into ac-

count the following temporal selection rules:

• If the tth frame is selected, any frame within the tem-

poral distance ±△t1 is no longer selected in the cur-

rent active learning cycle

• If the tth frame is selected, any frame within the tem-

poral distance ±△t2 is no longer selected in the next

active learning cycles

We set △t1 to a higher number than △t2. The intuition be-

hind this heuristic is that if the tth frame is visually similar

to the t ± △tth1 frame, it will adequately improve the net-

work such that the t ± △tth1 will have a low image-level
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CityPersons Caltech Ped. BDD100K

images 1835 51363 69836

instances 7740 20062 56473

images w ped. 1835 10523 17632

image size 2048× 1024 640× 480 1280× 720
type Image Video Image

Table 1. Statistics of the training sets.

score in the next cycle. By setting △t1 to a high number,

we ensure that the two frames are going to be visually dif-

ferent in the current cycle. On the other hand, △t2 sets to a

small number since the tth and t±△tth2 frames are visually

almost identical. Therefore, one of them will be enough to

improve the knowledge of the network in all the cycles.

More sophisticated methods such as comparing dense

optical flow of two frames or image hashing might be also

used to determine the similarity of two frames. Yet, it is not

trivial to tell without experiments if they will work better or

worse than our proposed rules.

Updating the model: Step 6 is to update the neural net-

work using the currently available labeled dataset Xal. In

this paper, we initialize the network using the pretrained

weights Wl and train it for T epochs on Xal.

4. Experiments

Datasets: We use CityPersons [30], Caltech Pedestrian [4]

and BDD100K [29] datasets. These are filtered such that

only labels related to pedestrian instances are retained.

Also, any pedestrian whose height is smaller than 50 pix-

els or its width/height ratio is not in the interval [0.2, 0.65]
is discarded. These choices are because of our network ar-

chitecture. For a different architecture, it might be possible

to ignore these filters. Table 1 shows the statistics of the

three datasets after applying these criteria.

The CityPersons dataset is used as the initial dataset Xl

and the Caltech Pedestrian and BDD100K are used as the

unlabeled set Xu during active learning cycles. As it turns

out, only 20% of frames in the Caltech Pedestrian dataset

and 25% of frames in the BDD100K dataset contain pedes-

trian instances. In addition, not only the size of images in

Xl and Xu is different, but they are also visually distinguish-

able. In other words, there is a domain shift [19, 25, 28, 27]

between Xl and Xu that makes the active learning proce-

dure more challenging. More importantly, while the Caltech

Pedestrian dataset contains video sequences, the BDD100K

is composed of still images without a clear temporal corre-

lation between them. This will assess the effectiveness of

our method on both video sequences and still images.

Implementation details: Each prediction branch in the

network is connected to a sigmoid function and the network

is trained by minimizing:

Figure 4. Time-to-completion for different b and B.

e(X) =
∑

x,y∈X

KΘ∑

k=1

−yk ln pk−(1−yk) ln(1−pk)+λ||W|| (7)

In this equation, λ is the regularization coefficient, pk(x) =
σ(Θk(x)) is the posterior probability and X = (xi, yi) is

the mini-batch of training samples where yi ∈ {0, 1}KΘ is

a binary vector. The jth element in this vector is 1 if the

sample x indicates a pedestrian that fits with the jth default

bounding box. The above objective function is optimized

using the RMSProp method with the exponential annealing

rate for T = 50 epochs. The learning rate is set to 0.001 and

it is annealed exponentially such that it reduces to 0.0001 in

the last iteration. Furthermore, the regularization term is

set to 2e−6. It is important to fix a proper negative to pos-

itive (N2P) ratio (i.e. background vs. pedestrians here) for

the mini-batches. As can be seen in the supplementary ma-

terial, N2P=15 provided the best detection accuracy in our

implementation. Focusing on the active learning method,

we set r = 9 as the spatial radius of Step 2 for obtaining

pixel-level scores; while we use 30 × 30 non-overlapping

regions to aggregate the pixel-level scores in Step 3. Fi-

nally, since Caltech Pedestrian dataset is organized as video

sequences, we set △t1 = 15 and △t2 = 2 to apply temporal

reasoning during the frame selection (Step 4).

Time-to-completion vs. budget: Given B, setting b is

one of the important steps before performing active learn-

ing. An inappropriate b value could increase the overall

time-to-completion of the active learning procedure. Fur-

thermore, setting b to a high number may reduce the active

learning to a sort of uniform sampling of images.

For instance, for one frame of Caltech Pedestrian dataset

(640×480 pixels), the time-to-completion of our network in

the forward pass with double evaluation2 is ∼150 ms, and

∼200 ms for a forward-backward pass. Factoring out the

labeling time of a frame (i.e. by assuming that is constant),

Figure 4 plots the overall time-to-completion of our method

using different values of b and B for the 51, 363 frames of

this dataset (Table 1). Suppose B = 7500, then, it will

take ∼46 hours to complete the active learning procedure

for b = 2500; while it will take ∼1800 hours for b = 50.

2In this paper, double evaluation refers to evaluating the original image

and its mirrored version to make predictions.

3676



On the one hand, setting b to 50 is impractical due to

its high time-to-completion. Besides, adding only 50 im-

ages at each cycle to Xal might not improve the knowledge

of the network adequately. On the other hand, setting b to

2500 might reduce active learning to sampling frames uni-

formly (as we will explain). Setting b to 500 is more practi-

cal since the time-to-completion is ∼190 hours. Moreover,

adding 500 frames to Xal at each cycle is likely to improve

the accuracy of the network better. Thus, unless otherwise

specified, we set b = 500 in all our experiments.

Our method vs. random: For comparing our method

with random sampling, we assume 14 cycles. For each

cycle, in the former case we apply our image selection

method, while in the latter case, the selection is purely at

random. In this way, we can perform per-cycle compar-

isons. Moreover, for a fair comparison, the same frame

selection rules for videos are applied to the random selec-

tion; thus, we call it guided random. All experiments are re-

peated five times. Figure 5 shows the mean of five runs for

each method, for a selection of cycles (suppl. material in-

cludes the 14 cycles) in terms of miss rate and false-positive

per image (FPPI) [4].

In the 1st cycle, 500 frames are selected purely using the

knowledge from the CityPerson dataset. The results indi-

cate that the frames selected by the guided random method

performs comparable to the frames selected by our method.

This might be due to the substantial difference between

visual patterns of the CityPerson and Caltech Pedestrian

datasets. In other words, the knowledge acquired from the

CityPerson dataset performs similar to random knowledge

in selecting informative samples at the 1st cycle. At the

end of the 1st cycle, Xal contains 500 samples (i.e. 1%
of the unlabeled training data) from the Caltech Pedestrian

dataset. Our method exploits the knowledge obtained from

current Xal to select next frames for labeling. In contrast,

the guided random method does not utilize the knowledge

of the network and selects the samples randomly.

At the end of the 4th cycle, 2K frames have been selected

by each of these methods. The results indicate that the Xal

selected by our active learning method trains a more accu-

rate network compared to the guided random. Finally, the

results at the end of the 14th cycle show that our method

performs significantly better than the guided random on the

Caltech Pedestrian dataset. This can be also seen in Figure

5, showing the miss rate at FPPI=1 per cycle.

Other pixel-level score functions: We also repeated this

experiment by replacing our proposed pixel-level score

function with the binary entropy and the Monte Carlo (MC)

Dropout [8]. For the binary entropy, the pixel-level score

(2) is replaced with skmn = H(pkmn) and it is replaced

with skmn = H(p̂kmn) −
1

T

∑T

t=1
H(pkmn|w ∼ q) for the

MC-Dropout approach where p̂kmn is the mean of T predic-

tions and q is the dropout distribution. The main difference

between this function and our proposed score function is

that our function computes the divergence locally whereas

MC-Dropout function computes the divergence in the same

spatial location but with T different predictions. We set

P = 30 and the dropout ratio to 0.5 and 0.1 in MC-Dropout.

Figure 6 illustrates the results, to be compared with Fig-

ure 5 (left-middle). Note how the binary entropy performs

poorly even compared to guided random. MC-Dropout pro-

duces more accurate results compared to guided random but

it is still less accurate than our proposed scoring function.

Figure 5 details more this observations comparing the re-

spective miss rates at FPPI=1, for each cycle.

Statistics of Xal: To further analyze these methods, we

computed the number of pedestrian instances selected by

each method at the end of each cycle (Figure 7).

The 7K frames selected by our method contains collec-

tively 5706 (the mean of five runs) pedestrian instances.

Conversely, there are only 2741 pedestrian instances within

the selected frames by the guided random method. This

quantity is equal to 3700 and 5243 using our method based

on the MC-Dropout and the entropy functions, respectively.

Even though the method based on the entropy selects

more pedestrian instances compared to guided random and

MC-Dropout, it is less accurate than these two methods.

This is mainly due to the fact that true-positive or true-

negative candidates might have high entropy values. As

the result, a frame that is processed by the network cor-

rectly might have a high image-level score and it will be

selected for labeling. However, selected frames might be

redundant since the network has already detected pedestri-

ans and background correctly but with a high entropy.

The intuition behind the MC-Dropout is that if the

knowledge of the network about a visual pattern is precise,

the predictions should not diverge if the image is evaluated

several times by dropping weights randomly at each time.

This is different from our method where it approximates the

divergence spatially. In addition to a superior performance,

our pixel-level score function is computationally more effi-

cient than the MC-Dropout approach.

Importance of budget size: Earlier in this section, we ex-

plained that setting the budget size properly is important to

make the overall time-to-completion of the active learning

method tractable. Here, we investigate the importance of

budget size b from another point of view. To this end, b

is increased to 1500 and the active learning method is re-

peated for five cycles (so labeling 1000 frames more than in

previous setting). Figure 8 illustrates the results.

At the 5th cycle, 7500 frames are selected for labeling.

Nevertheless, the network trained on the Xal selected by

our method with b = 1500 is less accurate than the network

trained on Xal selected by the guided random method with
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Figure 5. Performance curves of our active learning method (left) vs. random selection (middle), at different training cycles on the Caltech

Pedestrian dataset. N indicates the percentage of labeled images over the full available unlabeled training set. Thus, the black line shows

the best performance that the detector can provide (it is the same in both plots). The miss rate at FPPI=1 (right) compares our active

learning method with its variants based on entropy, MC-Dropout and the guided random selection.

Figure 6. Performance for other score functions: binary entropy (left) and MC-Dropout with dropout ratio 50% (middle) and 10% (right).

Figure 7. Number of pedestrian instances in Xs at each cycle.

Figure 8. FPPI vs. miss rate after increasing b to 1500.

b = 500. This is mainly due the first criteria in the selection

rules and the redundancy in Xs in the current cycle.

According to the first criteria, once a frame is selected,

any frame within the temporal distance ±15 from the se-

lected frame will be skipped in the current cycle. When the

budget size b is high, this forces the selection process to per-

form similar to sampling frames uniformly. Furthermore,

the knowledge of the network is superficial at the first cycle

and it might not be able to estimate the informativeness of

each frame properly. When b is high, some of the selected

frames in the first cycles might be redundant. Yet, by set-

ting b to a smaller value, the algorithm is able to select the

adequate amount of frames to improve its knowledge and

reduce the chance of selecting redundant samples.

Ablation study: Next, we study the importance of each

step in our proposed method. In each experiment, one step

is disabled while the others remain active. First, the aggre-

gation step (max-pooling, Eq. 5) for computing the image-

level score was changed to just averaging the pixel-level

scores. Second, the temporal smoothing step (Eq. 6) was

not applied. Third, the temporal selection rules were not

applied. Figures 9 and 10 illustrate the results. We see that

temporal smoothing does not seem to help considerably,

while max-pooling based aggregation and temporal selec-

tion rules are critical in the Caltech Pedestrian dataset.

BDD100K dataset: We also applied our method on the

BDD100K dataset which contains only still images. Thus,

temporal smoothing and temporal selection rules are not ap-

plied. We first trained our network on this dataset in or-

der to estimate the lower bound error for the active learn-

ing method. Results for different N2P values are illustrated

in the supplementary material, N2P=15 was again an op-

timum. However, the accuracy of our detection network

drops on this dataset compared to the Caltech Pedestrian

dataset. This is mainly due to the fact that BDD100K is

visually more challenging, thus, we argue that our current

network is not adequately expressive to learn complex map-

pings and provide a good accuracy.

Figures 11 and 12 illustrate the accuracy of our active

learning method and random selection, including the accu-

racy of our network when using the full available labeled

training set and N2P=15. Random selection performs bet-
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Figure 9. Performance after disabling the aggregation step (left), the temporal smoothing (middle) and the temporal selection rules (right).

Figure 10. Miss rate at FPPI 1, for each cycle, when chang-

ing/disabling intermediate rules of our method.

Figure 11. Performance of our method (top) and random selection

(bottom) at different cycles on the BDD100K dataset.

Figure 12. Miss rate FPPI=1, per cycle, for our method and ran-

dom selection.

ter than our method at the end of the 1st cycle. However,

our method performs slightly better starting from the 2nd

cycle. In contrast to the Caltech Pedestrian dataset case, the

improvement of our method over random is just slight.

One reason might be due to the network architecture

which has a high bias on the BDD100K dataset. When the

bias is high, the majority of visual patterns will be informa-

tive to the network. Nevertheless, the network will not be

able to learn more complex mappings from new samples.

Consequently, visual patterns similar to samples in Xal will

still have high scores in next cycles. In other words, redun-

dant samples are likely to be selected in the next cycle if

the network has a high bias. Overall, to solve this problem

we must start by designing a more accurate network. Thus,

we plan to consider a network with higher capacity, since

otherwise we think it will be very difficult for any active

learning method to reach the accuracy of using the 100% of

the labeled data without significantly increasing the number

of cycles (in Cycle 14 we only use the 13% of data here).

5. Conclusion

We have proposed an active learning method for object

detectors based on convolutional neural networks. Over-

all, it outperforms random selection provided that the de-

tector has sufficient capacity to perform well in the tar-

geted domain. Our method can work with unlabeled sets

of still images or videos. In the latter case, temporal rea-

soning can be incorporated as a complementary selection.

We have performed an ablative study of the different com-

ponents of our method. We have seen that specially rele-

vant is the proposed max-pooling based aggregation step,

which outperforms other proposals in the literature. As a

relevant use case, our experiments have been performed on

pedestrian detection facing domain shift alongside. In fact,

our method can be generalized to segmentation problems

as well as multi-class object detection and this is what we

consider as our immediate future work.
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